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Abstract—We present a signal detection scheme with low-
communication overhead for the recently developed distributed
ambient noise imaging (ANSI) system for real-time imaging the
geophysical subsurface structure. Signal detection enables ANSI
to perform adaptive data acquisition. Our method only requires
each sensor to exchange a limited number of frequency samples
with each other. Then each sensor directly estimates the so-
called local temporal energy (LTE) using their frequency samples
and received samples from another sensor, without having to
form the temporal cross-correlation function. Thus, we avoid
transmission of the temporal waveforms, which significantly
reduce the communication overhead. Numerical examples on a
real seismic dataset demonstrate the good performance of our
method.

I. INTRODUCTION

Ambient Noise Seismic Imaging (ANSI) [1], [2] is a new
geophysical imaging method, which aims to capture coherent
signals between sensors that are directly related to the geo-
physical structure. ANSI is a passive imaging method: it cor-
relates ambient noises recorded at different geophone sensors,
and no active sources are needed. Compared with traditional
active imaging methods, such as travel-time tomography [3],
where one has to rely on natural or human-induced active
sources (e.g., explosion) to generate useful signals, ANSI is
more environmentally sustainable.

ANSI was originally developed as an offline method using
all data that have been collected. The recently developed
distributed ANSI [4] is a sensor network that aims to perform
in-situ processing of data, by allowing sensors to exchange
information with each other in real-time and perform adaptive
data acquisition. A key component of distributed ANSI is
signal detection, also known as Quality Control (QC). By
detecting whether or not a pair of sensors contains the coherent
signal, sensors only record data when there is useful informa-
tion. The signal detection for offline ANSI requires computing
pairwise cross-correlation function between sensors and this
is not practical for distributed system due to communication
overhead.

In this paper, we present a new communication-efficient
signal detection scheme for distributed ANSI. The main idea
is that each sensor only communicates a limited number
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(a-b) The 1-Hz Rayleigh wave phase velocity maps using 5 virtual sources and all the virtual sources respectively. The S/N 
higher than 2 are presented on these maps. Only areas satisfying our one-period traveltime and three- out of four-quadrant 
selection criteria are shown in (a).
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Fig. 1. Illustration of distributed ANSI system. Left: sensors communicate
with each other to compute pairwise cross-correlation, to perform signal
detection and then subsequent imaging. Right: an image formed by data
collected by ANSI.

of frequency samples to each other, and then directly esti-
mates the so-called local temporal energy (LTE) for signal
detection. This is different from the existing centralized and
offline method, which requires computing the temporal cross-
correlation function and then estimate LTE. The original
method is not suitable to be used in a distributed system since
it requires sensors to know the complete temporal waveform
of each other, and the temporal waveforms in ANSI are
very long in order to accumulate enough coherence between
signals. Compared with the conventional method, our method
avoids directly estimating the time domain cross-correlation.
Our method further reduces the communication cost by per-
forming non-uniform downsampling within a narrow band of
frequency. We test our method on a real dataset collected at
Sweetwater, Texas, to show its good performance: one can
achieve a similar performance detecting the coherent signal
with the new scheme as the original time-domain approach.

Notations. Given an index set Ω, denote |Ω| as the cardinal-
ity of Ω. Given a vector x or a matrix A, xᵀ and Aᵀ denote
the transpose of x and A. Throughout this paper, we use lower
case letters to represent the signal in time domain, like h(t),
and use capital letters to represent the signal in frequency
domain, such as H(k). | · | denotes the modulus of a complex
number. ? denotes cross-correlation. X∗ denotes the conjugate
of a complex number X .

II. SIGNAL DETECTION IN ANSI

The ANSI system consists of multiple sensors (on the order
of hundreds) that collect seismic data continuously. The first
and foremost function for ANSI is signal detection. Although
the data collected are eventually used to form images of



the sub-surface structures (by solving the so-called Eikonal
equation [5]). However, most of the time, the measurements
do not contain the useful signal for imaging. Thus, signal
detection (also called “quality control” by seismologists), as a
first step, determines the period of continuous measurements
and the subset of sensors that contain useful information for
imaging. Our goal is to detect the existence of coherent signals
between two seismic sensors, with the minimum data being
transmitted between them.

A. Cross-correlation

We first examine the cross-correlation between a pair of
sensors. Given a pair of seismic sensors, each making N
observations xj(t), j = 1, 2, t = 0, · · · , N − 1. In the
original form of ANSI, the cross-correlation between each pair
of sensors is done in time domain [1]. The cross-correlation
function r(t), t = 0,±1,±2, . . . between x1(t) and x2(t) is
given by

r(t) = x1(t) ? x2(t)
∆
=
N−1∑
u=0

x1(u)x2(t+ u).

In ANSI, N is typically a very large number, because we have
to rely on very long sequences to accumulate enough energy
for the coherent signal.

B. Composite null signal detection

The signal detection in ANSI is done through local temporal
energy (LTE) of the cross-correlation function. which mea-
sures the energy of the cross-correlation function r(t) around
certain lag time. The lag time is determined as the expected
arrival of the signal based on the station distance and the
expected group velocity of the surface wave. For example,
for a station pair with 1-kilometer spacing, if we expect the
group velocity to be between 0.5 and 1.0 km/sec, then one
can define 1 to 2 second time window as the expected signal
window.

A “good” pair of sensors that have signal will have con-
centrated energy around certain lag, while “bad” pairs have a
large amount of energy far from that lag. Fig. 2 illustrates three
cases with signals (the cross-correlation function between pairs
of sensors has one clear peak near the lag around zero), and
three cases without a signal (the cross-correlation function has
significant energy away from the lag 0). In the figure, the
sensor indices are denoted by 001, 020, 030, 040, etc. “001-
025” denotes the cross-correlation between this pair of sensors.

LTE is computed by applying time-window filtering to r(t)
and then compute the sum-of-squares value of the windowed
signal. This can be done for various centers of the window to
measure LTE at different locations, and then we may obtain a
LTE profile function, as shown in Fig. 3.

The signal detection problem can be viewed as a hypothesis
testing on the LTE profile function and it has a composite null.
The alternative hypothesis is that there is a coherent waveform
that is observed by two sensors (with a relative delay; because
the noise sources propagate to two different sensors taking
different times). Two sensors observe a common nominal

001-020 stacked

001-030 stacked

001-040 stacked

001-025 stacked

001-052 stacked

001-408 stacked

001-020 stacked

001-030 stacked

001-040 stacked

001-025 stacked

001-052 stacked

001-408 stacked

H0: No Signal H1: Signal

Fig. 2. Cross-correlation between station pairs. Left: three “good” pairs that
contain the signal concentrated around zero lag; Right: three “bad” pairs
without a useful signal, where there is still a large amount of energy at large
lag that is far from zero.
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Fig. 3. Time-window filtering used to estimate e(t0), the LTE of cross-
correlation function within a specific time window centered at t0.

waveform (with a relative delay τ , the “lag” in seismology)
buried in noise

H1 :

{
x1(t) = ρ1s(t) + n1(t),
x2(t) = ρ2s(t− τ) + n2(t),

(1)

where ρ1 and ρ2 are the magnitudes observed by two sen-
sors, s(t) is an unknown deterministic unit-energy signal,∫
s2(t)dt = 1, n1(t) and n2(t) are zero-mean noises that

are independent of each other. Thus their cross-correlation
function will have one clear peak around certain lag above
the noise floor when the two waveforms are properly aligned.
The null hypothesis of “no signal” can be viewed as when
either r(t) consists of only noise, or there is significant energy
outside of the vicinity of the lag.

Based on this, a signal is detected, if the LTE around the
lag exceeds a threshold b > 0 and there is no significant LTE
far from the lag (below another threshold b′ > 0)

{e0 > b} and {ei < b′} , i = 1 . . . ,M, (2)

e0 =
∑
t∈S0 |r(t)|

2, ei =
∑
t∈Si |r(t)|

2 where S0 is a pre-
specified window around the lag and Si, i = 1, . . . ,M defines
the two sides of M regions that are away from the lag.

Hence, to perform signal detection in ANSI, one need to
estimate LTEs {e0, e1, . . . , eM}. Existing signal detection in
ANSI is done in the time domain, which first needs to estimate
the cross-correlation function r(t). Next, we present a new
approach, which avoids estimating r(t) but rather directly
estimate LTEs using limited frequency samples to lower the
communication cost.

III. COMMUNICATION EFFICIENT ALGORITHM

In the distributed setting, we would like sensors to commu-
nicate as little data as possible to achieve the detection goal.
We thus let sensors to transmit the sub-sampled frequency



components of their signals, and our goal is to perform signal
detection with as limited communication as possible. The new
detection scheme consists of three steps: (1) Each sensor
computes the Fourier transform (FFT) of their signals and
performs band-pass (BP) filtering; (2) Sensors communicate a
subset of non-uniform samples of their frequency components;
(3) Each sensor multiplies its frequency samples with the
received samples from another sensor to recover the LTE, and
to decide whether or not there is a coherent signal between
them.

A. Cross-correlation in frequency domain

It is well known that the cross-correlation in the time do-
main is equivalent to multiplication in the frequency domain.
Define the Fourier transform of signals xj(t) as

Xj(k) =

N−1∑
n=0

xj(n)e−i
2πnk
N , k = 0, . . . , N − 1,

where i is the imaginary number. Let R(k) be the Fourier
transform of r(t), by convolution theorem we have

R(k) = X∗1 (k)X2(k), k = 0, 1, . . . , N − 1. (3)

To improve computational efficiency, we can use Fast Fourier
Transform (FFT). The complexity of FFT is O(N log(N)),
while the complexity of directly computing cross-correlation
by convolution is O(N2).

B. Communication efficient scheme

Typically geophysicists are only interested in a pre-specified
narrow band of frequencies that are linked to particular imag-
ing depth into the ground [1]. Hence, instead of transmitting
the raw signal waveform, each sensor can only transmit a
few frequency components within the targeted frequency band.
To further reduce communication cost, one can perform non-
uniform downsampling at each sensor, and only transmit a sub-
set of frequency components in that band. As a consequence
of non-uniform downsampling, one can no longer perform
inverse FFT to go back to the time domain.

We propose to use the following scheme. Each sensor
computes the discrete Fourier transform of their local signal
xj(t). Then performs narrow band-pass filtering to keep only
a range of frequency components that we are interested in.
Then each sensor performs downsampleing to further reduce
the frequency samples in that range. Let

Ω = {f1, · · · , fm} ⊂ {0, 1, · · · , N − 1}

denote the indices of the downsampled frequency components,
which is the same across all sensors. Finally, sensor j only
transmits the subset of frequency samples {Xj(fk)}, where
fk ∈ Ω.

Assume m = |Ω| frequency samples are selected. Then this
reduces the amount of data to be transmitted from O(N) to
O(m). Usually, in ANSI, N � m, because we need to observe
a long enough noise sequence to observe coherent signal;
however, the frequency band we are interested is usually

narrow. For instance, in our real data example, N = 15, 000,
and m ranges from 120 to 1200 (with downsampling), which
corresponds to 99.2% ∼ 92% reduction in the amount of data
to be communicated. This reduction is for each sensor. In a
large sensor network, this reduction will significantly reduce
the total communication overhead.

C. Estimate local temporal energy from frequency samples

Once receiving the frequency samples from other sensors,
each sensor needs to perform signal detection from estimated
cross-correlation. However, since each sensor only has a set of
incomplete frequency components, each sensor only knows a
partial cross-correlation function by multiplying received fre-
quency components with its own. It only knows {R(fk)}, for
fk ∈ Ω. Hence, one cannot perform the conventional inverse
FFT to recover the time-domain r(t) from the incomplete
frequency components. Thus, one cannot directly estimate the
local temporal energy using r(t).

Now we present a method to estimate the local temporal
energy from {R(fk)}, fk ∈ Ω. Define a time-window function
as g(t − t0), where t0 is the center. For instance, g(t) is a
rectangular function with unit area. We consider the Gaussian
filter since its Fourier transform is also a Gaussian function
and smooth:

g(t) =

√
a

π
e−at

2

, (4)

where 1/2a is the variance of the Gaussian filter and we set the
window length to be 2/

√
2a, which means we only measure

the LTE in a narrow time interval [t0 − 1/
√

2a, t0 + 1/
√

2a].
The windowed temporal cross-correlation function within

time window centered at t0 is given by

h(t) = r(t)g(t− t0), t = 0, 1, . . . , N − 1. (5)

The LTE within this time window can be estimated from (5)
as

ê(t0) =

N−1∑
t=0

h2(t), t0 = 0,±1, . . . .

So far, we have found an expression for the LTE in the time
domain. Next, we will use the time-frequency duality to find
an expression in terms of frequency samples. For each time
window centering at t0, let G(k) denotes the Fourier transform
of g(t), thus G(k)e−i2πkt0/N is the Fourier transform of g(t−
t0). Let R(k) be the Fourier transform of r(t), due to time-
frequency duality, we have

H(k) = R(k) ? (G∗(k)ei2πkt0/N ). (6)

Since Fourier transform is an isometry by Plancherel theorem,
we can estimate LTE, equivalently, as

ê(t0) =

N−1∑
k=0

|H(k)|2. (7)

Hence now we only need to estimate H(k). Below, we will
use the relation (6), and assume that H(k)’s are smooth, which



is reasonable since it is resulted from filtering by a window
function.

Since we only know a subset of frequency components
for R(k), to use (6) and (7), we need to deal with missing
frequency samples. Similar to [6], we use total variation (TV)
norm minimization problem. Define G̃(k) = G∗(k)ei2πkt0/N ,
and formalize vectors H , R and the convolution matrix G,

G =


G̃(0) G̃(−1) · · · G̃(1−N)

G̃(1) G̃(0) · · · G̃(2−N)
...

...
. . .

...
G̃(N − 1) G̃(N − 2) · · · G̃(0)

 ∈ RN×N ,

H = [H(0), · · · , H(N − 1)]ᵀ ∈ RN×1,

R = [R(0), · · · , R(N − 1)]ᵀ ∈ RN×1.

Then to estimate LTE centered at t0, equation (6) which
corresponds to

H = GR. (8)

Once we can estimate Ĥ that satisfies (8), we can use (7) to
estimate the LTE at each window location t0.

With downsampling, we only have samples
Xj(f1), . . . , Xj(fm), j = 1, 2, from which we only
know R(f1), · · · , R(fm), which only corresponds to a subset
of entries of the R vector. We consider two approaches to
estimate Ĥ. The first simple approach is to fill zeros for the
missing entries of R, and solve H using (8). The second
approach considers a regularized solution, satisfying the data
constraint.Define

RΩ = [R(f1), · · · , R(fm)]ᵀ ∈ Rm×1.

let GΩ ∈ RN×m denotes the matrix consisting of all columns
of G at indices from Ω. Then the zero-filling solution should
satisfy H = GΩRΩ, or Gᵀ

ΩH = Gᵀ
ΩGΩRΩ. This creates m

linear constraints on the variables. We then find the solution
that has the smallest total variation norm:

minimize
H

TV(H),

subject to Gᵀ
ΩH = Gᵀ

ΩGΩRΩ.
(9)

Here TV(H) =
∑
i |H(i + 1) − H(i)| is the total variation

(TV) norm of H, which can be viewed as the `1 norm of its
derivative [7]. The motivation for using TV norm is that we
would like to find a piece-wise constant solution. As one can
imagine, the “true” energy function should have a set of non-
zero values in a window centered about the true “lag”, and
be nearly zero outside of that window. The convex optimiza-
tion problem here can be solved using standard optimization
softwares such as CVX [8].

IV. NUMERICAL RESULTS ON REAL-DATA

We test our method on a real dataset. The dataset consists
of 37 days of records (from 2016/09/16 to 2016/10/22) at
Sweetwater, Texas. There are seven sensors in this dataset,
with sensor indices given by 001, 020, 030, 040, 025, 052 and
408. We form six pairs by letting sensor 001 to communicate

with the remaining six sensors. The sampling rate of each
sensor is 50 Hz, which means there are 50 temporal samples
in a second.

For data in one day, we divide samples into 288 blocks;
each block contains a 5-minute length data since the lag time
is less than 5 minutes by our prior knowledge. For each pair
of sensors, we compute the cross-correlation function using
the 5-minute data, and then the final results are averaged over
288 blocks. The resulted average temporal cross-correlation
function are shown in Fig. 2. Sensors 020-001, 030-001 and
040-001 are “good” pairs with a coherent signal, while 025-
001, 052-001 and 408-001 are “bad” pairs with no coherent
signal. We use band-pass filtering to keep only 1-3 Hz content.
Below, the time window function is Gaussian (4) with width
1.2 seconds.

For each 5-minute data, for each LTE centered at t0, the
computation time for zero-filling least-square is less than 1
second, and for the total variation norm minimization is 7.68
second on average (when the down-sampling rate is 0.8).
Different LTE centers can be done in parallel. Thus our
algorithm can be run on-the-fly.

A. Recovery of local temporal energy

We first compare the LTE profile function that are (i)
obtained directly from time-domain cross-correlation func-
tion r(t), as the conventional method did; (ii) “zero-filing”
least-square solution obtained from solving (8), and (iii) TV
minimization solution from solving (9). We test the methods
on three pairs of “good” sensors that contain a coherent
signal, and three pairs of “bad” sensors that do not contain
a coherent signal. The results are presented in Fig. 4. For
“good” pairs (left column of the figure) and top two “bad”
pairs, both communication efficient methods have reasonable
performance, and the TV minimization approach seems to
recover the LTE function better. For some “bad” pairs with
low SNR (such as 001-408), it is harder to recover the original
LTE, however, the detection results are still consistent with the
original method, since the the recovered LTE indeed has a high
energy out of the “lag” near 0.

B. SNR versus downsampling rate

To quantify performance, we define a measure SNR =
Hs/Hn as illustrated in Fig. 5. Here Hs is the mean LTE
in time windows near the true lag (which is 0 in our cases)
and Hn is the mean LTE in time windows outside of 0.

We further study how the downsampling rate affects the
performance of the proposed method. From results shown in
Fig. 6, we can see that as we reduce the downsampling rate,
SNR decreases and it becomes more difficult to tell apart
“good” and “bad” pairs due to more information losses. The
“zero-filling” method fails to tell apart “good” and “bad” pairs
even when the downsampling rate is as high as around 0.8,
but the TV-min method works well when the downsampling
rate is higher than 0.4.
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Fig. 4. The local temporal energy (LTE) at downsampling rate 0.8, for the
six pairs of cross-correlation functions in Fig. 2. For each panel: Upper:
“true” LTE directly computed from r(t). Middle: LTE from TV minimization.
Lower: LTE from “zero-filling”.
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V. SUMMARY AND DISCUSSION

In this paper, we present a communication-efficient signal
detection scheme for Ambient Noise Seismic Imaging systems.
Detecting whether a pair of sensors contains the coherent
signal is an essential part of ANSI. Since detection is based on
cross-correlation function, sensors need to communicate with
each other. Without a communication-efficient scheme, sensors
transmit raw signals, which can be extremely inefficient. We
exploited the time-frequency duality and presented a scheme
where each sensor only sends a limited number of frequency
components. Furthermore, since the detection is based on the
local temporal energy (LTE), we do not aim to recover the
cross-correlation function, but rather present a novel approach
to directly estimate LTE from limited frequency samples. We
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(a): SNR versus downsampling rate for TV-min method
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Fig. 6. Performance of the communication efficient method. The metric
SNR = Hs/Hn over different downsampling rates.

tested two recovery methods based on simple “zero-filling”
and total variation norm minimization on real data. Both
methods perform reasonably well, with the TV minimization
approach give higher SNR gain in certain cases. Ongoing work
includes developing real-time signal detection and decentral-
ized detection with limited frequency samples.
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