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Abstract Ongoing climate change is leading to an increase in prolonged droughts and severe weather
events, which are particularly pronounced in semi‐arid regions, such as the western United States. These
extremes could have lasting social and environmental impacts. Continuous monitoring of near‐surface
hydrological processes and groundwater resources provides helpful information for effective water resource
management. The seismological signature of groundwater fluctuations is clear in the temporal variations in
seismic velocities, dv/v. To this end, developing a proxy for groundwater level using dv/v represents an
opportunity, but further understanding of the relation between dv/v and subsurface hydrology is required. In this
study, we apply single‐station cross‐component correlation analysis to 28 broadband seismic stations in Utah
between January 2006 and March 2023 and analyze the dv/v in the 2–4 Hz frequency band. To explain dv/v, we
linearly superimpose thermoelastic stresses, soil moisture estimated from remote sensing data products, and a
long‐term deep water table pore pressure. We find that the relative contributions of each depend on the location.
Still, adding a long‐termwater table decline, which is not systematically observed in soil moisture, better fits our
data. We conclude that soil moisture alone does not explain the variations in total water storage when subsurface
moisture is decoupled from the deep‐water table. We also conclude that dv/v can be used as a proxy for water
storage.

Plain Language Summary Climate change makes droughts and water shortages more common in
the western United States. Tracking how water moves and is stored underground is essential for understanding
these changes, but traditional tools such as monitoring wells and satellites cover too little ground or lack enough
detail. In this study, we used small changes in the speed of seismic waves, “dv/v,” recorded at 28 seismic stations
across Utah over more than a decade. These subtle changes help reveal how water flows and accumulates below
the surface. By combining dv/v data with estimates of soil moisture and long‐term lake level changes (used as a
proxy for groundwater), we built a model to separate the effects of shallow and deep‐water processes. We found
that dv/v can detect seasonal and long‐term shifts in subsurface water, and deep groundwater changes are
significant in some areas. This seismic method offers a powerful new way to monitor underground water across
large regions, bridging the gap between scattered well data and coarse satellite data. Our approach may help
scientists and water managers better understand and adapt to changing water availability in a warming climate.

1. Introduction
Due to ongoing climate change, widespread droughts and extreme weather events have become more common in
recent years (Coumou & Rahmstorf, 2012; Hulme, 2014). The increasing frequency and severity of droughts
could lead to enduring impacts on society and the environment (Khatri & Strong, 2020; Schwabe et al., 2013).
Utah is situated in a semi‐arid region of the western US, characterized by limited water availability. Water
resource management is crucial for the state. The water supply in Utah relies on the snowpack that accumulates in
the winter, and groundwater and stream flow control the runoff during the dry season (Brooks et al., 2021; Utah
State Water Resource Plan, 2021). There are several lakes and reservoirs across the state that capture snowmelt
runoff. The Great Salt Lake (GSL) is the largest endorheic lake in North America and serves as the terminus for
various rivers, streams, and subsurface groundwater within its extensive catchment area. Due to its salinity, GSL
does not directly contribute to the regional water supply, but its water level has been considered one of the primary
indicators of the state of regional water resources. The GSL has experienced periods of extended drought
throughout its history, including years of shortages and years of replenishment (Wang et al., 2012; Utah Division
of Water Resources, https://water.utah.gov/great‐salt‐lake/, last accessed 01/2023). Nowadays, the GSL is facing
the challenges of declining water levels, which have lowered by more than 3 m since 1999 (Hassan et al., 2023).
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Prolonged droughts can severely impact the lake's ecosystem and overall health (Baxter & Butler, 2020; Null &
Wurtsbaugh, 2020). However, the uncertainty associated with the groundwater inflow makes it difficult to
accurately assess the GSL water budget.

Conventionally, monitoring groundwater levels, whether in aquifers or as subsurface moisture, requires in situ
instrumentation (i.e., wells and probes) with site‐specific sensitivities. These measurements represent the site's
ground truth for water storage but have two limitations. First, data collection from ground‐based sensors, that is,
wells and probes, has historically been varied. Second, although recent efforts (e.g., Perrone & Jasechko, 2017)
have expanded access to well data, the information remains fragmented across numerous databases with varying
standards, limiting its broader utility. Alternatively, remote sensing techniques provide increasingly frequent
measurements (∼3 days) and a low spatial resolution (∼10–35 km) (e.g., Tangdamrongsub et al., 2020). Temporal
water mass variation on a much larger scale can be monitored using remote sensing (e.g., GRACE; Landerer &
Swenson, 2012) despite the relatively low spatial resolution at around a few hundred kilometers. Ford and
Quiring (2019) comprehensively compared soil moisture measurements for subsurface moisture, especially in
situ with modeled products and remote‐sensing‐based derived estimates. They concluded that both the North
American Land Data Assimilation System project phase 2 (NLDAS‐2) and the Soil Moisture Active Passive
(SMAP) consistently performed best. Improved parameterization, models, or proxies of near‐surface water
remain a desirable avenue of research.

The seismology community has recently demonstrated the potential of linking seismic velocity changes (dv/v)
with hydrological variations, where intermediate spatial sensitivity and resolution from a fewmeters to kilometers
can be achieved. The time resolution ranges from hours to decades, depending on the station operation period and
research purpose. Many studies have reported a strong (anti‐)correlation (e.g., instantaneous response) between
perturbation in seismic velocities and subsurface hydrological variables such as groundwater level changes and
soil moisture variations (Clements & Denolle, 2018; Gassenmeier et al., 2014; Illien et al., 2021; Lecocq
et al., 2017; Mao et al., 2022, 2025; Oakley et al., 2021; Sens‐Schönfelder & Wegler, 2006; Shen et al., 2024;
Vittecoq et al., 2025; Voisin et al., 2016). Because the method relies solely on passive seismic noise and can
utilize existing seismic stations, it offers a flexible and logistically favorable way to monitor subsurface hy-
drological parameters at the mesoscale. This method, known as time‐lapse passive seismic interferometry,
measures coda wave perturbations from repeating waveforms and infers dv/v. The repeated waveform can be
obtained from either repeated sources or noise correlation functions calculated using different time windows
(Pacheco & Snieder, 2005; Sens‐Schönfelder & Wegler, 2006; Snieder et al., 2002; Weaver & Lobkis, 2004).

Variations in groundwater levels in the subsurface induce local changes in effective pressure, leading to changes
in seismic velocities. In fully saturated media, for example, below the water table, changes in rigidity, the ability
of rocks to resist shear stresses, are reduced with increasing pore pressure (e.g., Clements & Denolle, 2023;
Fokker et al., 2021; Ostrovsky & Johnson, 2001), which leads to a reduction in shear wave speed. Density changes
due to pore pressure changes are not large because of the incompressibility of rocks and water (Fokker
et al., 2021). Still, dv/v has been correlated with dilatational strains empirically (Donaldson et al., 2019; Hotovec‐
Ellis et al., 2022; Sens‐Schönfelder & Eulenfeld, 2019; Takano et al., 2019) and as predicted from the earthquake‐
related drop/healing behaviors or temperature‐humidity coupling effects under a non‐linear elasticity framework
(Clements &Denolle, 2023; Diewald et al., 2024; Hobiger et al., 2014; Okubo et al., 2024). Above the water table,
in partially saturated media, both rigidity and density are affected by relative water content, and more complex
physics, which depends on pore water distribution, may affect the wave speed (e.g., Illien et al., 2021; Oakley
et al., 2021; Shen et al., 2024; Solazzi et al., 2021). Seismic waves have spatial resolution and sensitivity that
depend on their wavelengths: high‐frequency signals can have relatively high spatial resolution (e.g., 500 m/s
shallow seismic waves at 5 Hz have a 100‐m wavelength) and shallow depth sensitivity compared to low‐
frequency signals, considering the surface waves dominant codas (Obermann et al., 2013, 2016; Yuan
et al., 2021). Therefore, shear waves are helpful to track groundwater changes at intermediate spatial resolutions
(e.g., Delouche & Stehly, 2023; Gaubert‐Bastide et al., 2022; Mao et al., 2025). Because seismic signals are
continuously recorded, they can be used to monitor, at least at the hourly time scale, water levels at the mesoscale.

One outstanding issue remains on the relative contribution of saturation (or moisture) changes in partially
saturated media and pore pressure changes below the water table. Indeed, the depth resolution is relatively smooth
in surface waves, and conventional networks of seismometers do not permit precise depth analysis. Illien
et al. (2021) were the first to propose a model that combines groundwater storage and subsurface moisture to
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explain the surface observations of dv/v. They relied on in situ moisture and geochemical tracer measurements for
groundwater depth to discriminate between the two water storages. They found that the intermittent coupling of
subsurface water with groundwater during replenishment cycles in Nepal can explain the dv/v observations.
Recent advances demonstrate that seismic observations can directly benefit hydrologists by revealing subsurface
hydrological dynamics that are difficult to capture using conventional measurements. Sun et al. (2025) use high‐
resolution distributed acoustic sensing (DAS) to characterize rapid hydro‐thermal activities in frozen and partially
frozen soils, providing new insights into cryosphere–hydrology interactions and their mechanical signals.
Likewise, Shen et al. (2024) employed fiber‐optic seismic sensing to resolve detailed vadose‐zone soil moisture
changes at high spatial resolution. At larger scales, Lesparre et al. (2024) demonstrate that seismic refraction can
help image the hydrofacies architecture, substantially enhancing hydrological model parameterization and
groundwater flow predictions. These examples show that passive and active seismic methods, especially com-
bined with DAS, electrical, or soil‐moisture sensing, give hydrologically continuous, detailed data on infiltration,
water‐table changes, freeze–thaw, and subsurface hydro‐mechanical interactions. While multi‐sensor networks
and seismic refraction experiments are increasingly valued and deployed (e.g., Lesparre et al., 2024; Oakley
et al., 2021; Shen et al., 2024; Sun et al., 2025), they often span only short‐term experiments. Here, we tackle the
problem of differentiating the relative contributions of saturation in the vadose zone and pore pressure beneath the
water table, across a regional scale, using decades of seismic data. Long‐term dv/v observations offer a unique
perspective on subsurface water dynamics, complementing traditional monitoring measurements with sustained,
spatially extensive insights.

This study analyzes continuous seismic recordings from 28 broadband seismic stations across Utah (Figure 1)
from January 2006 to March 2023. We highlight the connection between seismic velocity variations and hy-
drological observations. Utah's hydrology features snowmelt‐driven surface water, an arid to semi‐arid climate,
and complex groundwater systems that respond significantly to climatic and anthropogenic changes. Under-
standing these processes is essential for explaining this region's temporal variations in subsurface seismic
properties. The manuscript is organized as follows: Section 2 introduces the data set and methodology used in this
work. We use single‐station measurements to determine the temporal evolution of dv/v (e.g., Clements &
Denolle, 2023; Feng et al., 2021; Hobiger et al., 2014; etc.). Section 3 presents the seasonality and co‐evolutions
between the observed dv/v, GSL, Utah Lake water levels, and near‐surface moisture. Assuming linear super-
position, we investigate the relationship between dv/v variations and the potential hydrological signatures.
Section 4 discusses the regional pattern of the observed dv/v and the dominant factors influencing it. Finally, this
study highlights the value of time‐lapse passive seismic interferometry in monitoring and understanding hy-
drological processes in semi‐arid regions. Such insights are essential for developing sustainable resource man-
agement strategies that benefit both society and the environment in the context of climate change.

2. Data and Methodologies
2.1. Hydrological Data

2.1.1. The Great Salt Lake (GSL) and Utah Lake

The GSL (Figure 1), the largest terminal lake in North America, is the remnant of the larger Pleistocene Lake
Bonneville. It is an essential natural and economic resource for the region. On the other hand, Utah Lake
(Figure 1), located south of the GSL, is a freshwater lake fed by several rivers, with the Jordan River as its outlet,
flowing northward into the GSL. We gather GSL water level data from the United States Geological Survey
(USGS) Water Resources (https://dashboard.waterdata.usgs.gov, last accessed 10/2022, Site No. 10010100). It
shows roughly an annual water level variation of ∼1.2 m (∼4 ft) on top of a long‐term dry‐wet cycle of nearly 3 m
(Figure 2a). The Utah Lake water level is estimated from the storage volume obtained from the Snowpack
Telemetry (SNOTEL) Utah reservoir site (Site No. 10166500), operated by the Natural Resources Conservation
Service (NRCS) of the United States Department of Agriculture (USDA, https://www.nrcs.usda.gov/, last
accessed 04/2023). We estimate the water level by dividing the storage volume by the lake area of 384.4513 km2

(95,000 Acres). Its water level exhibits long‐term dry‐wet variations (Figure 2b), similar to the GSL. Its annual
variation is ∼1 m.
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2.1.2. Soil Moisture Equivalent Water Thickness (SM‐EWT)

Moisture in vadose (unsaturated) zones also plays a crucial role in the near‐
surface water resources (Illien et al., 2021; Shen et al., 2024). However,
due to the lack of co‐located hydrological measurements, we characterized
soil moisture equivalent water thickness (SM‐EWT) using North American
Land Data Assimilation System (NLDAS‐2) (Xia, Mitchell, Ek, Cosgrove,
et al., 2012; Xia, Mitchell, Ek, Sheffield, et al., 2012) as the near‐surface
water content for comparison. NLDAS was developed by a nationwide
multi‐institution partnership (Mitchell et al., 2004). NLDAS ingests various
observational data, such as satellite remote sensing measurements, ground‐
based weather station data, and radar‐based rainfall estimates. These data
are assimilated into sophisticated land surface models (LSMs) to produce
gridded outputs (0.125° × 0.125° ≅ 14 km × 14 km), including terms related
to surface energy and water budgets. To compare SM‐EWT to our dv/v ob-
servations, we extract the SM‐EWT data from the closest grid point to the
seismic stations (see Figure 1). The locations are usually within∼9.3 km. The
average annual variations of SM‐EWT range from 0.05 to 0.22 m. Figure 2c
shows an SM‐EWT time series as an example at Station CVRU.

2.1.3. Jordanelle Reservoir

The Jordanelle Reservoir is located approximately 3 km from seismic station
JLU. The reservoir serves multiple purposes, including water storage, flood
control, and recreation. Therefore, its highest and lowest water levels differ
from those of other surface water bodies (the blue curve in Figure 2d). We
collected the reservoir's monthly water levels from the United States Bureau
of Reclamation (https://data.usbr.gov, last accessed 04/2023). Station JLU is
located on a mountain crest. While the hydraulic connectivity of this site to
the reservoir is unclear, considering its proximity, its subsurface velocity
variations could be affected by the reservoir's poroelastic loading in response
to the 30‐m annual water level variations.

2.1.4. Groundwater Wells

For in situ groundwater data, in our study area, most wells are in the valley
and exhibit irregular time resolution for data collection. However, two wells

managed by the USGS Utah Water Science Center (https://www.usgs.gov/centers/utah‐water‐science‐center, last
accessed 04/2023, Site Nos. 414411112543701 and 401312112442301), shown as green squares in Figure 1, have
relatively comparable time samplings. These two wells are located near the seismic stations HVU and DUG (the
green squares in Figure 1).

2.2. Temperature Data

In addition to hydrological components, thermoelastic effects also contribute to the dv/v seasonality (Fokker
et al., 2024; Richter et al., 2014; Shen et al., 2024; Tsai, 2011). Across Utah, the average air temperature change
over a year ranges from below zero to 40 degrees Celsius. To take temperature effects into account, we collect air
temperature records from the Parameter‐elevation Relationships on the Independent Slopes Model (PRISM)
Gridded Climate Data (PRISM Climate Group, https://prism.oregonstate.edu/, last accessed 04/2023, Daly
et al., 2008). The PRISM Climate Group gathers climate data from numerous monitoring networks, applies
advanced quality control methods, creates spatial climate data sets to reveal both short‐term and long‐term climate
patterns, and provides the PRISM, a 4 × 4 km gridded product. We extract the data from the points closest to our
seismic stations. The temperature records at each station are generally similar, with the lowest temperatures
typically occurring in early February and the highest around July, averaging between 20.4 and 28.4 degrees
Celsius annually. We interpolated the temperature and hydrological data daily to compare them with the dv/v time
series.

Figure 1. Station map. The inverted triangles represent the broadband
seismic stations used in this study. The red inverted triangles identify the
stations whose time series are shown in Figure 4. The green squares are the
two closest groundwater wells used for comparison. Red crosses are the soil
moisture equivalent water thickness (SM‐EWT) data points from the
NLDAS‐2 model. The square encircles the area of the selected grid unit
(0.125° × 0.125°) of the center of the “x.” The area surrounded by the pink
line encompasses the Great Salt Lake watershed (from the Utah Division of
Water Resources, https://water.utah.gov/).
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Figure 2. Temporal variability of observed dv/v (warm‐color‐coded curves) and the corresponding hydrological factors (blue
curves). The dv/v axis is inverted in sign. (a) Station SPU dv/v versus the GSL level; (b) Station MPU dv/v versus the Utah
Lake level; (c) Station CVRU dv/v versus the corresponding soil moisture equivalent water thickness (SM‐EWT); (d) Station
JLU dv/v and the Jordanelle Reservoir level; and (e) Station DUG dv/v and the nearby groundwater level record.
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2.3. Seismic Data and Data Processing

Taking advantage of the continuous seismic recordings, this study analyzes three‐component continuous
broadband seismic recordings between January 2006 and March 2023 from the University of Utah Regional
Seismic Network (UU) stations and the United States National Seismic Network (US) in Utah. To study both
long‐term and annual dv/v changes, we only include the 28 broadband stations with over 5 years of operation in
our analysis (Figure 1, inverted triangles). Figure S1 in Supporting Information S1 shows data completeness for
the stations. We perform a general standard pre‐processing, which removes instrumental response, demeans,
detrends, and tapers before decimating the data to 20 Hz and storing them in 1‐day‐long segments. We remove all
component observations with data gaps in any single component and check daily waveforms in spectrograms to
exclude malfunction periods.

2.3.1. Single‐Station Cross‐Component Correlations

We perform a single‐station cross‐component correlations (SC) analysis, which has been well demonstrated in
investigating tectonically and environmentally driven dv/v evolutions in previous studies (e.g., Clements &
Denolle, 2023; De Plaen et al., 2016; Feng et al., 2021; Hobiger et al., 2014; Viens et al., 2018; Yates et al., 2019).
We adopt Welch's method (Seats et al., 2012) to improve the quality of the correlation functions. We first cut the
daily three‐component seismic data into 10‐min windows, detrend, taper, and apply spectral whitening in the
frequency band 0.1–8 Hz. We then calculate the SC functions between each non‐identical component (i.e., ZN,
ZE, NE, EN, EZ, and NZ) with non‐overlapping 10‐min time windows. We calculate the root mean square (RMS)
amplitude for each 10‐min SC and remove all 10‐min SCs with an RMS above five times the daily averaged RMS.
Those windows often contain unfavorable energetic signals (e.g., earthquakes, instrumental irregularities, and
non‐stationary transient signals). We stack all remaining SCs for each station and cross‐component to obtain the
references. The 60‐day window is selected to obtain the coherence current SC functions (Figure S2 in Supporting
Information S1). It enhances the coherence and retains essential signals across seasons. We focus on the 2–4 Hz
frequency band, where coherent SC coda signals are observable.

2.3.2. Computing dv/v Using the Stretching Method

Assuming the velocity change in the medium is laterally homogeneous, for each 60‐day stacked SC function (as
the current SC function hereafter), we measure the relative velocity change dv/v compared to the reference SC
function. Here, we assume that the dt/t (time shift over lag time) of the coda signal is related to dv/v via the
equation (Snieder et al., 2002):

dt
t
= −

dv
v
. (1)

Equation 1 implies that delayed phase shifts (dt > 0) are associated with velocity reductions (dv < 0). For a
uniform change in dv/v, the delay time increases with the lag time as propagation paths are longer for scattered
waves that arrive later. We measure dv/v by band‐passing the SC functions in the 2–4 Hz range and a selected 2–
8 s lag time coda window (Figure S2 in Supporting Information S1, black boxes) to reduce the effect of energetic
near‐zero lag time ballistic waves.

We adopt the stretching method (Sens‐Schönfelder & Wegler, 2006) to measure the dv/v evolution with time. A
weighted contribution across the six SC components is used to compute the final dv/v time series, dvv final, (Hobiger
et al., 2014; Viens et al., 2018):

dv
v final

=
1

∑
6
i=1 cc2i

∑
6

i=1
cc2i (

dv
v
)
i
, (2)

where cci and ( dvv )i are the maximum correlation coefficients among the current and reference functions and the
estimated dv/v of each component after stretching, respectively.We also calculate the uncertainty of the estimated
dv/v for each cross‐component following the approach of Weaver et al. (2011). We present the averaged un-
certainty of all components as the uncertainty of our dv/v time series (e.g., Figure 2).
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2.4. Spatial and Depth Sensitivity Measurements

The lateral sensitivity of our measurements is ∼1 km based on the first Fresnel zone approximation (Bennington
et al., 2018). Assuming strong Rayleigh waves in the coda of the single‐station correlations, we use surface‐wave
sensitivity with depth given a shear‐wave velocity profile, taking the mean values from the grids near seismic
stations from Schmandt et al. (2015) to obtain the depth sensitivity kernels as shown in Figure S3 in Supporting
Information S1. With this framework, we find that the depth sensitivity of our measurements is within the top
150 m. This estimation carries some uncertainty since the velocity model may not accurately represent the near
surface for assessing 2–4 Hz waves, and our assumption that surface waves dominate the SC (e.g., Yuan
et al., 2021). The state's average water table depth is 8 m (Fan et al., 2007), though the UUSS broadband stations
are mainly located away from the basins and where the water table is deeper (∼10–30 m). The satellite‐based soil
moisture SM‐EWT provides estimates in the top 2 m (Xia, Mitchell, Ek, Sheffield, et al., 2012). These water‐level
depths are shallower and fall within the assumed depth of the seismic measurements, motivating our combined
analysis of soil moisture and water table depth.

2.5. Modeling dv/v

We model dv/v with a linear combination of the factors to understand how much each factor contributes to the
system. We identify two potential water storage mechanisms that impact seismic velocities: subsurface moisture
(e.g., Illien et al., 2021; Oakley et al., 2021; Shen et al., 2024) and water‐table levels (e.g., Gaubert‐Bastide
et al., 2022; Voisin et al., 2016). Furthermore, our satellite‐based soil moisture observations are only sensitive to
the top 2 m (Xia, Mitchell, Ek, Sheffield, et al., 2012). At the same time, the water table is reported to be below
3 m; we thus assume these observations are decoupled. The coupling between water table and SM‐EWT may be
expected during wet periods (e.g., Illien et al., 2021), but our measurements lack the sensitivity to discriminate
between these components.

Additionally, we consider thermoelastic stress and model it with the time‐shifted surface air temperature to model
the diffusion at a depth of annual temperature variations (e.g., Berger, 1975; Richter et al., 2014). There could be
confusion about residual seasonality in the groundwater level, because we removed seasonality (lowpass filtered)
from our groundwater‐level proxy using the lake level, which might leak into the thermoelastic term. A linear
superposition is used as an approximation. Most studies on hydrological effects below the water table have
assumed a linear superposition (Clements & Denolle, 2023; Ermert et al., 2023). Although recent work on
partially saturated media suggests a more complex hydromechanical model (Sakaki et al., 2010; Shen et al., 2024;
Solazzi et al., 2021) or discovers non‐linear relationships between thermoelasticity and water content (e.
g., Diewald et al., 2024), we ignore the more complex hydromechanical model and instead assume a linear
relationship between soil moisture and dv/v, as previously used in the literature (e.g., Illien et al., 2021; Kang
et al., 2025; Oakley et al., 2021).

2.5.1. Modeling dv/v

This study explores novel ways to introduce groundwater and soil moisture with temperature effects to explain
seismic velocity variations, dv/v. First, we use a base model formulated as

dvvbase(t) = A + B · SMEWT(t) + C · T(t − Δttshift), (3)

where the parameters to fit are the constant level (A) and coefficients (B, C) to respectively the soil moisture term,
SMEWT(t) and the temperature term with a time shift T(t − Δttshift) . Considering the long‐term decline of the
groundwater table over the past decades (Perrone & Jasechko, 2017; Wada et al., 2010), we propose two models:
(a) the base model in Equation 3 accompanied by a linear trend and (b) the base model in Equation 3 accompanied
by a lowpass filtered lake level to synthesize water‐table effects on dv/v. In the first model, a positive linear trend
LT(t) represents the corresponding increase in dv/v due to the long‐term decline in the groundwater table. The
first model is written as

dvvlinear(t) = dvvbase(t) + LT(t). (4)
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In the second model, assuming the regional groundwater level is similar to the lake level in the long term, we
lowpass filter the Utah Lake level with a 2‐year corner period to approximate the groundwater term denoted as
Lakelowpass at any given time t, with a time shift Δtwshift that allows for hydraulic diffusivity from the lake. The
model leverages the known correlation between groundwater and lake levels (Namdar Ghanbari & Bravo, 2011;
Wu et al., 2022), justified by the strong correlations between the GSL and the Utah Lake levels and dv/v (see
Results section). This model is written as

dvvlowpass(t) = dvvbase(t) + D ·Lakelowpass (t − Δtwshift), (5)

where D is the sensitivity of the groundwater to dv/v.

2.5.2. Model Fitting With Bayesian Inference

Following the steps outlined by Ermert et al. (2023) and Okubo et al. (2024), we utilize emcee, a software tool
based on Python (Foreman‐Mackey et al., 2013), to fit the time series in a Bayesian framework. The emcee
employs the MCMCmethod and offers various advanced sampling algorithms. TheMCMC process is a Bayesian
method for estimating model parameters by generating samples from posterior distributions when analytical
solutions are lacking. It forms a Markov chain that explores the parameter space based on observed data like-
lihood and prior information, producing samples from the posterior. We adopt the stretch move method that
Goodman and Weare (2010) introduced to update model parameters involving a set of walkers. We choose 32
walkers and perform 12,000 iterations, with 10% discarding as burn‐in. The log‐likelihood function, ln(l(θ)), with
a set of model parameters θ is referred to as Okubo et al. (2024):

ln(l(θ)) = −
1
2
∑
i
[
(dvvobs (ti) − dvvmodel (ti,θ))2

σ̂2i
+ ln( σ̂2i )], (6)

where σi is the estimated error of the observed dv/v, dvvobs is the observed dv/v, and dvvmodel is the predicted dv/v
from models dvvlinear and dvvlowpass at the time ti, respectively. During the modeling process, we set the prior
values of each term based on the knowledge of previous literature, such as B and D are negative due to the anti‐
correlation between shear waves (dv/v) and water content (e.g., soil moisture in Illien et al., 2021; and
groundwater level, Sens‐Schönfelder & Wegler, 2006); C is positive due to the correlation between dv/v and air
temperature (e.g., Richter et al., 2014). Table 1 summarizes the parameters and the corresponding sampling
ranges of the model. The 90‐day bounds of temperature effect are based on an average 70‐day shift from a
statewide experiment by Clements and Denolle (2023). The time shift of the assumed groundwater table is given
in a range of [− 182, 182] days, considering the unknown inflow and seepage (e.g., Somers & McKenzie, 2020),
but only within a year‐round cycle.

To prepare the data for modeling, we apply a 30‐day rolling average to the dv/v time series to smooth it and make
it comparable to other variables, such as SM‐EWT, lake level, and temperature, all sampled monthly. We trim the

Table 1
Model Parameters and the Ranges Used for the MCMC Sampling

Variable Description Sampling range [min, max]

A Offset of dv/v [− 1.0, 1.0]%

B Factor of soil moisture equivalent water thickness [− ∞, 0]

C Factor of temperature [0, ∞ ]

Δttshift Time shift of the temperature time series [0, 90] days

D Factor of the assumed groundwater level [− ∞, 0]

Δtwshift Time shift of the assumed groundwater level time series [− 182, 182] days

LT Corresponding linear increase due to the linear decline of the
groundwater table

[0, ∞]

f0 Uncertainty of dv/v estimation [10− 10, 1010]
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time series with the exact starting and ending dates to align each component at the same stations. All the time
series have the mean values removed and have been normalized to [− 1, 1]. Stations HVU and VRUT have over a
year of data gaps, which will introduce biases into modeling processes. Therefore, we divided these data sets into
two periods for these stations and named them HVU1, HVU2, VRUT1, and VRUT2.

Recent studies have proposed that coupling between soil moisture, groundwater, and temperature may be
necessary to explain the dv/v time series better and to better represent rheological models (e.g., Diewald
et al., 2024; Illien et al., 2021; Sens‐Schönfelder & Eulenfeld, 2019). Since we lack in situ and independent
information about these variables, we chose the simple model of decoupled, linear superposition of effects.

3. Results and Interpretation
3.1. Seasonality of the Observed dv/v

The observed dv/v evolutions reveal strong seasonality at most stations. We calculate yearly averaged dv/v time
series at all stations to investigate the strength of their seasonality (Figure 3; see Figure S4 in Supporting In-
formation S1 for all stations). Figure 3c shows the annual dv/v stacks for several representative stations. Based on
the yearly dv/v variations, we calculate the average peak time of the highest and lowest dv/v for all stations and
summarize them in Figures 3a and 3b. Considering the uncertainties of those low annual variation stations, we
only showed those time series with average yearly variations above 0.3%. Overall, the average positive dv/v peak
times are observed in autumn between August and October (Figure 3a), and the negative dv/v peak time appears
around late spring and early summer between April and June (Figure 3b). These peak time patterns are consistent
with Utah's general water cycle, which goes from October 1st to September 30th, where groundwater is lowest
during the dry summer‐fall months and replenishes during the spring runoff. Station JLU is unique due to its
proximity to the managed reservoir. It is reasonable that it shows a different peak time than the others. Looking
more closely, stations HWUT and FORU have a dv/v plateau during the autumn and winter months (Figure 3c)
despite the peak times being slightly delayed compared to other stations (Figure 3). Stations at higher elevations
tend to have a later negative peak time, likely due to the late snowmelt in mountainous areas, although this is not
always apparent.

3.2. Basic Correlation Between dv/v and Lake Levels

The GSL and Utah Lake water level records manifest the multiyear dry‐wet variations of the northern Utah
hydrological system. The lake's water level reflects the 2007 drought and multiyear droughts in 2012–2017 and
2020–2022 (Figure 4a). Similar long‐term variations are also observed by the dv/v at nearby stations in the GSL
watershed (Figure 4b, those red inverted triangle stations in Figure 1). In Figure 4b, the dv/v time series are plotted
in a negative sense to improve visualization of the anti‐co‐evolution of the water levels. We see a slight down‐
going (increase in dv/v) in 2007 at Stations MPU and SPU. An apparent long‐term decline (increase in dv/v) over
the six stations appeared in 2012–2017 and the period after 2020.

The dv/v at stations within the GSL watershed generally correlate better with lake levels than stations outside.
Figures 5a and 5b provide an overview of the correlation coefficients and R‐squared values for each station listed
in Table S1 in Supporting Information S1. Within the watershed, Station MPU demonstrates the strongest
negative correlation to the water levels of both the GSL and Utah Lake, with values of − 0.82 and − 0.91,
respectively. The significant correlation at Station MPU suggests that the dv/v measurement and the Utah Lake
level are sensitive to the same hydrological factors. The two stations near the Salt Lake Valley between Utah Lake
and the GSL (Stations CTU and NOQ) show stronger correlations with Utah Lake levels, with values of − 0.69
and − 0.58, and slightly lower correlations to the GSL of − 0.59 and − 0.4. The two stations near the GSL (Stations
SPU and HVU) show slightly lower correlations with the lakes, with values between − 0.42 and − 0.65. Sur-
prisingly, station BGU shows a stronger correlation with the Utah lake water level (− 0.82) than with the GSL
water level (− 0.67). Station RDMU, outside the GSL watershed, shows a high correlation with the GSL water
level (− 0.72), higher than other outside‐watershed stations.

3.3. Basic Correlation Between dv/v and SM‐EWT

The correlation coefficients between dv/v and the SM‐EWT show less spatial coherence (Figure 5c), unlike the
correlation between lake water levels and dv/v, which is primarily focused within the GSL watershed. The
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strongest (anti‐)correlation appears at Station CTU, with a value of − 0.78 (highlighted by a yellow label in
Figure 5c). The Stations FORU and FOR1 in southern Utah also show relatively high correlations of − 0.72 and
− 0.6. Station CVRU (highlighted by an orange label in Figure 5c) is one of the few stations deployed on a soil
site, as documented by the UUSS (Farrell, pers. comm.). While the correlation at CVRU isn't the strongest, its
correlation coefficient reaches − 0.56. Except for Station JLU, the correlation coefficients between dv/v and SM‐
EWT are mainly negative, consistent with previous findings (e.g., Illien et al., 2021; Shen et al., 2024). However,
it is worth noting that we are not using direct soil moisture measurements; instead, we are comparing our results
with the equivalent water thickness from NLDAS‐2 that correlates best with in situ moisture relative to other
remotely sensed measurements during this period.

Figure 3. Peak time maps of the (a) highest and (b) lowest points in annual dv/v, and the (c) annual stacks. In (a) and (b), the
circles are color‐coded with the peak time, along with their average peak‐to‐peak annual variations presented by size. The
pink line marks the Great Salt Lake watershed boundary. The peak‐to‐peak seasonal mean amplitudes are represented by
their circle size. The stations with annual variation (larger than 0.3%) are noted in bold‐texted station names.
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3.4. Models of dv/v With All Factors

We explore the posterior distribution that arose from the MCMC inversion in Figure 6. Diagonal terms represent
the marginal posterior distributions for individual model parameters, while the off‐diagonal panels show the joint
distributions between pairs of model parameters, highlighting their trade‐offs. This result highlights the strength
of the Bayesian MCMC approach in capturing the full range of plausible parameter values and their in-
terdependencies, information that would be missed by relying solely on single‐point estimates or best‐fit models.

We evaluate the quality of models using the Akaike information criterion (AIC, Akaike, 1974) and the Bayesian
information criterion (BIC, Schwarz, 1978), which were recently used in modeling dv/v time series (e.g., Okubo
et al., 2024). These criteria assess the trade‐off between goodness of fit and model complexity, penalizing the
number of free parameters to avoid overfitting. AIC is based on information theory and favors models that balance
fit and flexibility; lower AIC values indicate a better model. BIC introduces a stronger penalty for complexity that
increases with sample size, making it more conservative and more likely to select simpler models when data are

Figure 4. Co‐evolution of dv/v and GSL and Utah Lake levels. (a) Lakes' water level variations with the drought monitoring
graph from the US National Integrated Drought Information System; D0–D4 represent different drought levels, from
abnormally dry (D0) conditions to exceptional drought (D4). The blue and cyan curves represent the GSL and Utah Lake
records, respectively. (b) Co‐evolution of flipped dv/v for stations adjacent to the lakes (red reversed triangles in Figure 1)
and the lakes' water level records (same scale as in (a) and with slight transparency). The color of the dv/v curves represents
estimated uncertainty.
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plentiful. In addition to the two models mentioned in Section 2.5 (Equations 3–5), we also evaluate them by
retaining only SM‐EWT or temperature in both to assess their performance with one excluded. The number of
model parameters, k, in the linear‐trend and low‐pass models mentioned in Section 2.5 is 5 and 6, respectively.
When we retain only the SM‐EWT term in the model, k is 3 and 4. When we retain only the temperature term with
a time shift, k is 4 and 5. Overall, the combination of hydrological and thermoelastic terms provides a better fit.

We select the best fit of the testing models as the one with the highest likelihood. Figures S5, S6, and Table S2 in
Supporting Information S1 summarize the optimal fits and their factor values. Here, we demonstrate the misfit of
each model as well as the AIC and BIC analyses by using the difference between the model of the soil moisture
term with a linear trend for illustration (Figure 7). The misfit and ΔAIC result (Figures 7a and 7b) suggest that the
lowpass model (magenta points) provides a better explanation of the data for most stations. However, the ΔBIC
results indicate that the lowpass model is not systematically the optimal choice for all stations. This discrepancy
highlights the inherent bias in AIC toward more complex models and the more conservative nature of BIC. It also
suggests that no single model can fully capture the observed behavior across all stations at distinct regimes,
pointing to spatial variability in the controlling processes or data constraints.

Subplots (d) and (e) in Figure 8 illustrate the fitting results for both models at two example stations, MPU and
SRU, alongside their input time series shown in subplots (a–c). At Station MPU, the long‐term dv/v pattern is
effectively captured and explained by the lowpass model. However, at some stations, the AIC and BIC values for
different models are very close to each other, indicating that long‐term water table decline is equally well rep-
resented by a simple linear trend as the groundwater table proxy. Some stations, such as HMU and NLU, exhibit
poor model fitting altogether, with high misfit and high AIC‐BIC values (see time series in Figures S7 and S8 in
Supporting Information S1). Some stations exhibit equal model fitting, regardless of the model compositions, as
indicated by similar AIC‐BIC values (e.g., SRU, shown in Figure 7). Some stations see greater improvement
when incorporating a more sophisticated model (e.g., the low‐pass model) with lower AIC‐BIC values and lower
misfit, such as stations MPU and CTU in the Great Salt Lake Watershed.

4. Discussion
4.1. dv/v Variability and Local Site Conditions

The dv/v variability across stations may provide helpful information for understanding the regional hydrological
processes in different parts of the State of Utah. While the annual dv/v amplitude of each station varies (Figure 3),
stations in the south and west of the GSL (e.g., BGU and NOQ) show a relatively smaller value than the station at
the north edge of the GSL (e.g., HVU). This pattern may be related to the underground aquifer structures,
geological features, and lake inflows (Baskin et al., 2002). The dv/v observed at stations outside the GSL

Figure 5. Correlation between the observed dv/v and the lakes' level variations and SM‐EWT. (a) dv/v correlation with the GSL water level; (b) dv/v correlation with the
Utah Lake water level; (c) dv/v correlation with SM‐EWT. The colors represent the correlation coefficient between the dv/v and the corresponding lake water level. The
circle size shows the absolute value of the correlation coefficient at stations. The pink lines in the figures represent the extent of the Great Salt Lake watershed.
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watershed has no spatial correlation. The latter may indicate that other controlling factors, such as rheological
response or incorrect groundwater proxies, may hinder this analysis.

To further explore the lithological dependence on the dv/v variability, the soil type information obtained from the
Utah Geospatial Resource Center (https://opendata.gis.utah.gov, last accessed 07/2024) and Vs30 values (Heath
et al., 2020) at each station were collected and summarized in Table S3 in Supporting Information S1. Throughout
the comparison, while no clear relationship was found between dv/v amplitude and soil type, annual temperature,
or SM‐EWT changes (Figure S9 in Supporting Information S1), a higher correlation (0.61) was observed with
Vs30, indicating that seismic characteristics may play a role.

4.2. (No) Regional Pattern

Utah has a semi‐arid, desert overall climate with microclimates influenced by topography and surface water
bodies. The hydrological year typically begins when precipitation returns after a dry summer, usually on October
1st. The regional weather pattern shows that fall and winter bring precipitation, particularly heavy winter snow.

Figure 6. Posterior probability distributions of the model parameters derived from the MCMC analysis for Station CTU. The diagonal panels represent the probability
mass functions, with bar sums normalized to one. Solid vertical lines indicate the best likelihood value, and the contours represent the 2D histogram of the model
parameter pair, with darker colors signifying higher probabilities. Orange squares indicate optimal model parameters. Notably, the best likelihood parameters do not
always align with the peaks of the probability distributions.
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Snowpack melt gradually replenishes the surface and groundwater in winter and spring. Surface and groundwater
storage (e.g., reservoirs and aquifers) recharge in the spring and deplete over the summer due to high air tem-
peratures (evaporation and groundwater usage) and low precipitation.

The annual dv/v cyclicity typically begins with a decline in late September and early October (Figure 3), which
aligns well with the start of hydrological year cycles. This decrease in dv/v continues until the following April and
May, reaching its lowest point, which may indicate the highest groundwater level or near‐surface water content.
After that, dv/v increases until the fall, and the cycles repeat. Snowmelt, the primary source of stream and
groundwater replenishment in the Mountain West, may correspond with the peak of dv/v stacks.

Additional quantitative interpretations are difficult to draw from the lack of spatial patterns. We do not observe a
clear relationship between the lowest or highest dv/v and site conditions: correlation is weak among elevation,
slope, and aspect, given the location of the sensors and a 30 s (∼1 km) Digital Elevation Map, for which we chose

Figure 7. The (a) normalized misfit, (b) ΔAIC, and (c) ΔBIC values across stations. ΔAIC and ΔBIC are calculated by
subtracting the values from the linear model with SM‐EWT only. The colors indicate the models, each with different
components involved.
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SRTM15+V2.6 from Tozer et al. (2019). We only found a weak anticorrelation (− 0.24) between the time of
maximum dv/v (lowest groundwater levels) and the slope, which we interpret as earlier depletion in the moun-
tainous areas where snow melts and flows to the plains, and delayed aquifer discharge in the plains.

The co‐evolution of observed dv/v and water levels between the GSL and Utah Lake (Figure 4) demonstrates
regional seismic stations' resolvability to monitor water resources in watersheds. Utah Lake is located upstream of
the GSL, connected by the Jordan River. A stronger correlation between dv/v and Utah Lake water levels is
observed. It is possible that GSL's water level is not the most suitable groundwater proxy, as it is subject to strong
summer evaporation and more affected by anthropogenic activities and agricultural groundwater usage. There-
fore, some stations' dv/v have higher correlation coefficients with the Utah Lake water level than with the GSL.

We recognize that we are not solving for the water budget, which would entail balancing inputs of rain pre-
cipitation, snowmelt, lake seepage, with outputs of evapotranspiration, and runoff, to estimate soil moisture and
groundwater table, because we are not modeling these terms due to complex coupling with the atmosphere. For
example, air temperature controls the evaporation from surface water and moisture in the vadose zone (i.e.,
Benson & Dirmeyer, 2021; Chen et al., 2020). Our simplified model of anticorrelation between water storage and
dv/v is empirical but well supported by past observations (e.g.,Clements & Denolle, 2018; Illien et al., 2021; Mao
et al., 2025; Sens‐Schönfelder & Wegler, 2006; Shen et al., 2024). However, our novel contribution that most
seismic station dv/v are better explained by a combination of groundwater and subsurface moisture, is important.

4.3. What Is the Dominant Effect on dv/v?

The coefficients that optimally fit the lowpass model are markers of the relative significance between individual
contributors to the temporal evolution of dv/v (Figure S6 in Supporting Information S1). Coefficient B, related to
the relative importance of subsurface soil moisture, shows a spatial pattern similar to the dv/v‐moisture corre-
lation (Figure 5c), as expected from the strong correlation. Stations that are more sensitive to soil moisture

Figure 8. The modeling of the time series of Stations MPU and SRU. The subplots from top to bottom are the normalized terms used in the model fitting process: the
normalized dv/v (gray curves), (a) flipped Utah Lake water level (thin blue curves) and lowpass lake water level (thick blue curves), (b) flipped SM‐EWT (dark blue
curves), (c) temperature records (orange curves), and (d) the optimal fit of the linear‐trend and (e) lowpass models (red curves).
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somewhat exhibit lower Vs30 values, likely explained by the fact that lower velocities increase shallow depth
sensitivities for dv/v. Since the broadband stations used in this study are intentionally deployed on bedrock sites,
where high Vs is expected near the site, the weak correlation may be related to uncertainty in the Vs30 model or in
selecting Vs30 as a proxy for the Vs structure at the entire site.

There is no specific spatial pattern for the significance of thermoelastic effects, as measured by C, the importance
of thermoelastic effects, and Δttshift, the phase shift for thermoelastic stress related to the thermal diffusion
properties of the materials. This indicates that we cannot draw a physical interpretation to predict common
thermoelastic effects at these sites. Because our goal was to characterize hydrological effects, we treat it as a
correction in the later analysis, rather than interpreting its physical meaning.

The pattern in water table level proxy, indicated by coefficient D (i.e., lake level), shows a spatial coherence
among those sites within the GSL watershed, especially along the mountain front. The time shift to the water table
proxy, Δtwshift, reflects the phase difference between the local water table and the proxy water level. A group of
stations shows unsatisfactory results when fitting with the best‐found time shift, 19 stations (shown as circles in
Figure 9) that exhibit a strong anti‐correlation between the Δtwshift and elevation (CC = − 0.64, Figure 9a). The
trend can be explained by the gravitational flow from the high‐elevation snowmelt‐recharged water table down to
the valley floor and that is well described in the Mountain Block Recharge (MBR) model (Markovich et al., 2019)
The presence of positive Δtwshift values may indicate that these sites exhibit water‐level high after the lake is
recharged, which could be explained by the fact that the lake recharge is much faster from rivers than from
groundwater, and that groundwater recharge may be slower from the foothills and/or partially explained by lake
seepage. We interpret from our modeling that the groundwater levels peak from January to March at high ele-
vations and then from August to November on the valley floors. We thus interpret that the recharge is quite
heterogeneous, with some areas in the state clearly lagging behind surface water recharge. This implies a long‐
term gravity‐driven flow that may be around 19.2 m/month, similar to what is reported for MBR (Markovich
et al., 2019).

At some sites, the groundwater table peaks at some stations earlier than the general snowmelt season, which we
explain by early snowmelt in winter and spring. Note that the high‐elevation stations that follow the trend are still
lower than those stations out of the trend (triangles in Figure 9), likely because they are situated at elevations

Figure 9. The distribution of the best Δtwshift relative to the (a) station elevation and (b) station locations. The circles represent
the stations with relatively low elevations (separate two clusters in (a)) compared to stations with relatively high elevations
(triangles).
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where snowpack accumulated more over the winter. We excluded several
stations from this MBR phase analysis because their best time shift posterior
distributions were found at the boundary of our prior. Some of them show
weak annual variations (e.g., VRUT). Some are strongly correlated with
thermoelastic effects (e.g., SRU), subsurface moisture (e.g., CVRU), or other
water bodies (e.g., JLU). Several stations are outside the GSL watershed and
at higher elevations than the network average (e.g., BSUT, PNSU, MTPU).

An additional measure of hydrological contribution to dv/v can be determined
by the relative contributions between soil moisture and water table in
explaining dv/v, we calculate the mixing ratios RSMEWT = − B/(|B| + |D|) and
RGW=D/(|B|+ |D|), respectively (Figure 10). The mixing ratio spatial pattern
indicates that the groundwater levels contributes greatly to dv/v at the stations
within the GSL watershed, but the lack of spatial pattern can easily be drawn
from sites outside of the watershed.

Our approach of applying a low‐pass filter to the lake levels enables us to
observe the rises and falls of the groundwater table over a long‐term scale.
The residuals between the optimal model and observations can likely be
attributed to the shorter timescale groundwater level variations, which we
ignored in this work, or residual soil moisture content (Dralle et al., 2018;
Illien et al., 2021; Padilla et al., 2014). Another possible factor contributing to
the mixing ratios is the velocity structure below the stations. Although our
measurements suggest a top 150‐m depth sensitivity, the various velocity
structures at stations may also contribute to either moisture, which samples
shallower perturbations more effectively, or the groundwater table, where
relatively deeper perturbations are present.

These patterns demonstrate site dependency and local dv/v uniqueness.
Figure 11 conceptually illustrates the findings in this study. Seismic stations
near the lake or on the arid plain capture different environmental processes
that induce diverse rheological responses (dv/v). Each station has different
contributing terms for modeling, making it difficult to draw general behavior
from this data, a finding which is quite similar to that of previous studies
(Clements & Denolle, 2023; Viens et al., 2018). Our modeling results suggest
that while the groundwater table has generally declined over the past decades,
using lake levels as proxies for the groundwater table effectively estimates

groundwater flow time and length scales confirming that downstream lake levels as a proxy for local groundwater
(e.g., hydropotential) seems well justified and aligns with our seismic observations.

4.4. The Observed dv/v and In Situ Groundwater Well Data

At Station DUG, the dv/v time series shows a modest correlation (− 0.39) with groundwater level variations
recorded at a nearby well, despite the station being only ∼6.8 km away. Given the expected lateral sensitivity of
dv/v measurements (∼1 km), this distance may still be too far to capture localized hydrological changes.
Additionally, site‐specific factors such as differing water usage or recharge conditions could influence the well
measurements, contributing to the lower correlation. DUG is located at a surface‐water divide (Markovich
et al., 2019), which might explain the modest correlation with the well measurements.

In contrast, Station HVU, located approximately 12.3 km from a groundwater well, demonstrates a considerably
stronger correlation (− 0.69) between dv/v and groundwater level variations during 2010–2022 (Figure S10 in
Supporting Information S1). Aside from a lag of ∼1.4 months, the time series are well aligned, likely reflecting
the spatial offset between the seismic and hydrological sites. This strong agreement indicates that passive seismic
interferometry can effectively capture near‐surface hydrological variations and may hold promise for ground-
water monitoring, especially if applied with denser, locally distributed seismic arrays. This well is located
downstream of the topographic high, where HVU is, supporting the strong hydraulic connection between the two
sites and the complementarity of using seismic stations for groundwater well.

Figure 10. The mixing ratio map between the SM‐EWT and GWL terms that
explains the hydrological signal of dv/v. When the SM‐EWT term dominates
in fitted dv/v, the stations are color‐coded red. When the groundwater term
dominates, the stations are color‐coded in blue.
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4.5. The dv/v Response to Large Fluctuations of a Nearby Reservoir

Station JLU is severely affected by water levels in the Jordanelle Reservoir, exhibiting behavior distinct from
other stations (Figure 2d). The two models proposed in Section 2.4 do not fit the observation at Station JLU at all
(Figure S5 in Supporting Information S1). It implies that the primary factor driving dv/v here is the other major
hydrological component, the reservoir. Therefore, we test another model using the base model ybase(t) and
reservoir water level with time shifting allowed in a range of [− 182, 182] days, finding a well‐converged solution
with a shift of 49.5 days. The fitting results (Figure S11 in Supporting Information S1) are improved, although the
model is still unable to fit the data very well. We note that the water level variation in Jordanelle Reservoir
(Figure 2d) is considerable, about an order of magnitude greater than that of GSL and Utah Lake. Considering the
relatively small surface area of the reservoir (∼10 km2), the dv/v variation of JLU might hence reflect the sub-
surface pore pressure response to a point water source (i.e., similar to a hydrological slug test but on a large scale).

5. Conclusions
We used time‐lapse passive seismic interferometry to examine the near‐surface hydrological processes through
continuous seismic observation. We conducted a series of analyses on continuous seismic recordings from 28
broadband seismic stations across Utah State, covering the period between January 2006 and March 2023. We
applied a single‐station method to determine the temporal evolution of dv/v. Our dv/v findings uncovered distinct
seasonality and long‐term variations across the stations. We explored these dv/v patterns by comparing the

Figure 11. A conceptual illustration. A conceptual illustration of the near‐surface seismic velocity response to hydrological
and thermal forcing across a diverse landscape in Utah, based on findings in this study. (a) A schematic illustration of a
diverse landscape with a cross‐section. The cross‐section depicts a simplified underground structure with vadose zones and
aquifers. Seismic stations (S1 near the lake; S2 on the arid plain) capture distinct dv/v responses to local hydrological forcing.
The thick black arrows represent the fast surface runoff, and the thin black dashed‐line arrows represent the slow subsurface
flow. (b) The schematic of the fitting components, temperature (orange), subsurface soil moisture (cyan), and deep
groundwater variations (blue), which are linearly combined to explain observed dv/v signals (red curves) at each station. The
arrow size represents the concept of how much each factor contributes.
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observed dv/v evolutions with two major surface water bodies in this area (i.e., the GSL and Utah Lake) and near‐
surface water (i.e., SM‐EWT).

Throughout the analyses, we found that the average annual dv/v variations and peak times closely align with the
state's regional water cycle, offering valuable insights into connecting near‐surface seismic properties with hy-
drological processes. The amplitude in dv/v seasonality may be primarily related to local site conditions, as the
Vs30 at the stations. Multi‐year wet‐dry cycles are captured by those stations within the GSL watershed. The
strong correlation between dv/v and groundwater level, with lake levels serving as proxies and hydropotential
surfaces, suggests that both are sensitive to the same controlling factors. Later, we examine the dv/v evolution
using two linear models. We test two distinct groundwater level assumptions to account for the long‐term declines
in groundwater over the years. The modeling results suggest that a linear trend is too simplistic to estimate the
pattern of the declining groundwater table. We take a lowpass filtered lake level as the assumption of long‐term
groundwater table variations in the model. Overall, this model gives a better explanation of dv/v.

This study highlights the feasibility of monitoring and understanding hydrological processes in semi‐arid regions
using time‐lapse passive seismic interferometry. With ongoing climate change, it is crucial to implement effective
management strategies that ensure the sustainable use of resources for both society and the environment. A major
limitation of this study, also pointed out in Clements and Denolle (2023), is the challenging lack of spatial
correlation between dv/v given the sensor spacing, which also highlight the spatial variability in groundwater flow
and soil moisture. Further studies should build stronger hydrological models to establish if the observed spatial
heterogeneity is explained by the spatial heterogeneity of the subsurface water and its dynamics over seasons.
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The Great Salt Lake water level data is from the USGS Water Resources (Site No. 10010100, https://waterdata.
usgs.gov/nwis/dv?cb_62614=on&format=gif_default&site_no=10010100&legacy=&referred_module
=sw&period=&begin_date=2006‐01‐01&end_date=2023‐03‐31). The two groundwater well records are from
the USGS‐Utah Water Science Center (Site Nos. 414411112543701, https://waterdata.usgs.gov/nwis/dv?cb_
72019=on&format=gif_default&site_no=414411112543701&legacy=&referred_module=sw&period=&begi
n_date=2006‐01‐01&end_date=2023‐03‐31, and 401312112442301, https://waterdata.usgs.gov/nwis/dv?cb_
72019=on&format=gif_default&site_no=401312112442301&legacy=&referred_module=sw&period=&begi
n_date=2006‐01‐01&end_date=2023‐03‐31). The Utah Lake data is from the Snowpack Telemetry Network
(SNOTEL, Utah reservoir site 10166500, https://wcc.sc.egov.usda.gov/reportGenerator/view/customSingleStatio
nReport/monthly/start_of_period/10166500:UT:BOR%257Cid=%2522%2522%257Cname/2006‐01‐01,2022‐
12‐31/RESC::value,RESC::median_1991,RESC::pctOfMedian_1991?fitToScreen=false) maintained by the
Natural Resources Conservation Service, U.S. Department of Agriculture (USDA). The soil moisture equivalent
water thickness data is from the North American Land Data Assimilation System project phase 2 (NLDAS
project, 2022). The Jordanelle Reservoir water level data is from the United States Bureau of Reclamation (https://
data.usbr.gov/catalog/2353/item/471). The air temperature data is from the Parameter‐elevation Relationships on
the Independent Slopes Model (PRISM) Gridded Climate Data (https://prism.oregonstate.edu/explorer/map.php).
The soil characteristics are derived from the Utah Geospatial Resource Center (https://opendata.gis.utah.gov/data
sets/047e5268bed7404e8b7cf349d36c8283_0/explore?location=39.344336%2C‐111.365547%2C‐1.00). The
seismic waveform data is from the IRIS data services. Data of noise correlation functions and post‐processing
scripts are available onHarvard Dataverse (Feng, 2024) andGitHub (https://github.com/kuanfufeng/Utah_Paper).
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