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Abstract Numerical simulations of seismic wave propagation are crucial for investigating velocity
structures and improving seismic hazard assessment. However, standard methods such as finite difference or
finite element are computationally expensive. Recent studies have shown that a new class of machine learning
models, called neural operators, can solve the elastodynamic wave equation orders of magnitude faster than
conventional methods. Full waveform inversion is a prime beneficiary of the accelerated simulations. Neural
operators, as end‐to‐end differentiable operators, combined with automatic differentiation, provide an
alternative approach to the adjoint‐state method. State‐of‐the‐art optimization techniques built into PyTorch
provide neural operators with greater flexibility to improve the optimization dynamics of full waveform
inversion, thereby mitigating cycle‐skipping problems. In this study, we demonstrate the first application of
neural operators for full waveform inversion on a real seismic data set, which consists of several nodal transects
collected across the San Gabriel, Chino, and San Bernardino basins in the Los Angeles metropolitan area.

Plain Language Summary Full waveform inversion enables high‐resolution imaging of subsurface
physical property variations, allowing detailed characterization of geological structures such as faults,
reservoirs, and sedimentary basins. However, it is computationally expensive using traditional numerical
methods, due to numerous evaluations of the forward modeling process and its adjoint. We use a class of
machine learning models named neural operators as a surrogate solver to accelerate the forward process and,
thereby, the inversion. We show that trained neural operators can perform full waveform inversion more
efficiently with less existing knowledge. We apply the method on ambient noise seismic data collected in the
northern Los Angeles basins and obtain results verified with previous geological studies. The same model can
potentially generalize to different regions and help to improve earthquake hazard assessment.

1. Introduction
Seismic tomography for sedimentary basins is important for assessing earthquake hazards considering the fact
that the basins can trap and amplify seismic waves, leading to stronger and longer ground shaking. Fine‐scale
subsurface structures are typically determined by active source surveys, which often operate at high fre-
quencies but are expensive and limited by environmental impact issues. Alternatively, seismic data from passive
sources, such as ambient noise and earthquakes, can be more readily acquired and can also compensate for the
absence of low‐frequency information in active source data. Many have shown in seismic interferometry that the
cross‐correlation between diffuse waveforms recorded at two stations approximates the elastodynamic Green's
function (Wapenaar, 2004; Wapenaar et al., 2010). The so‐called empirical Green's function (EGF) created from
ambient noise is more commonly used by ray‐theory‐based tomography methods (Guo et al., 2015; Lin
et al., 2008; Yao et al., 2010; Zheng et al., 2011), which do not account for the finite‐frequency effects in het-
erogeneous media. Full waveform inversion (FWI), which accounts for the full physics of wave propagation, can
reveal more accurate and detailed subsurface structures (Y. Liu et al., 2017; X. Liu et al., 2023; Maguire
et al., 2022; Sager et al., 2020; K. Wang et al., 2021; Z.‐D. Zhang et al., 2021).

Despite its significant advantages, FWI can be time‐consuming and memory‐intensive for large problems, which
hinders its broader applicability. Moreover, the adjoint‐state method (Fichtner et al., 2006a; Q. Liu &
Tromp, 2006; Plessix, 2006; Tromp et al., 2005), which is conventionally used for FWI, requires the initial model
to be sufficiently close to the true Earth to avoid being trapped in local minima (Fichtner et al., 2006b; Gauthier
et al., 1986; Panning et al., 2009; Virieux & Operto, 2009). In ambient noise tomography (ANT), the adjoint‐state
method typically relies on a model derived from surface wave dispersion analysis and ray‐based approximations
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as a starting point (Chen et al., 2014; X. Liu et al., 2023; Maguire et al., 2022; C. Zhang et al., 2018; Z.‐D. Zhang
et al., 2020). To tackle these challenges, recent studies have shown that neural operators (Azizzadenesheli
et al., 2024; Z. Li et al., 2020a, 2020b) can solve wave equations orders of magnitude faster than traditional
numerical solvers (Yang et al., 2021, 2023; Zou et al., 2024). In deep learning, an analogue to the adjoint‐state
method is known as the reverse‐mode automatic differentiation (AD) (Baydin et al., 2018; Rumelhart
et al., 1986). While these two methods have been shown to be mathematically equivalent (Richardson, 2018; W.
Wang et al., 2021; W. Zhu et al., 2021), AD, which underpins the modern deep learning platforms such as
PyTorch (Paszke et al., 2019) and TensorFlow (Abadi et al., 2016), remains aligned with advances in state‐of‐the‐
art optimization techniques. For example, methods such as mini‐batching (LeCun et al., 2002), stochastic gradient
descent (SGD) (Bottou, 2010), and adaptive moment estimation (Adam) (Kingma & Ba, 2014) have been
developed to better navigate non‐convex loss landscapes and escape poor local minima. These methods have
prevailed for over a decade in the machine learning community, while remaining relatively underexplored in the
classic FWI world. Only in recent years have they begun to attract attention (Bernal‐Romero & Iturrarán‐
Viveros, 2021; Mao et al., 2025; Richardson, 2018; J. Sun et al., 2020; Thrastarson et al., 2022; van Herwaarden
et al., 2020). Although efforts have been made to implement finite difference solvers in PyTorch/TensorFlow to
enable access to AD and various optimization strategies (Richardson, 2018; W. Zhu et al., 2021), this approach is
memory prohibitive for realistic applications, because back‐propagation requires storing wavefields at every time
step in memory. We bypass this obstacle by learning a direct mapping through neural operators developed in
PyTorch. In alignment with the rapid advancements in optimization techniques, neural operators have the po-
tential to alleviate—though not fully resolve—the cycle‐skipping problem in FWI, making it possible to start
from a simpler velocity model (e.g., a 1D model).

The primary advantage of neural operators in solving partial differential equations (PDEs) over other prevailing
machine learning approaches, such as physics‐informed neural networks (PINNs) (Raissi et al., 2019), is that they
are trained to learn the solution operator for an entire family of PDEs instead of a specific instance. This means
that a neural operator has the potential to generalize to arbitrary PDE coefficients (e.g., velocity structures) if the
training instances are ideally sampled—for example, from random fields (Yang et al., 2021, 2023; Zou
et al., 2024). The training is a one‐time effort for the forward process and there is no further training for the neural
operator in the inversion stage, where the velocity parameters are updated with gradients computed fromAD. This
is similar to traditional FWI but replaces the adjoint simulation with back‐propagation (LeCun et al., 1988).

In recent years, neural operators have been increasingly applied to seismic wave propagation modeling. They
have been used for modeling acoustic (Yang et al., 2021), elastic (C. Li et al., 2025; Yang et al., 2023), and
viscoelastic (Wei & Fu, 2022) waves. Most applications are limited to 2D due to computational and memory
constraints. However, Lehmann et al. (2024, 2025) circumvented the 3D computational bottleneck by predicting
only the surface ground motion, while Zou et al. (2024) modeled the full 3D wavefield by parameterizing the
operator in the frequency domain, thereby eliminating the need to model the time dimension. Learning frequency‐
domain solutions offers memory efficiency for neural operators and has attracted growing interest (Cheng
et al., 2025; Huang & Alkhalifah, 2025; Kong et al., 2025; B. Li et al., 2023; T. Zhang et al., 2023). Among these,
Huang and Alkhalifah (2025) and Cheng et al. (2025) proposed learning the residual (scattered) wavefield instead
of the full wavefield to address the point‐source singularity. Current research has primarily focused on synthetic
data, while the application of neural operators to real seismic data remains largely unexplored.

Our contributions are as follows. We demonstrate the first application of neural operators for ambient noise
tomography on a real seismic data set, specifically the Basin Amplification Seismic Investigation (BASIN)
survey (BASIN, 2018; Clayton et al., 2019), which deployed linear nodal arrays in the northern Los Angeles (LA)
basins. We provide a trained neural operator that is applicable without retraining to any linear array in the study
area, or potentially other problems with a comparable spatial footprint. With the trained neural operator, FWI can
be performed two orders of magnitude faster than the conventional adjoint method. Our tomography results are
consistent with previous studies in the same region (Ghose et al., 2023; Y. Li et al., 2023; Villa et al., 2023; Zou &
Clayton, 2024) without the strong dependence on priors. The proposed method can be scaled to 3D, provided that
sufficient computing resources are available.
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2. Methods
In this section, we first present the governing equations, as well as the methodology of using neural operators to
solve the forward and inverse problems. Then, we share the training strategy.

2.1. Helmholtz Neural Operator With Automatic Differentiation

Seismic wave propagation in an elastic medium follows the (isotropic) elastic wave equation

ρ
∂2u
∂t2

= ∇λ(∇ ⋅u) + ∇μ ⋅ (∇u + (∇u)T) + (λ + 2μ)∇(∇ ⋅u) − μ∇ × ∇ × u + f, (1)

where u is the displacement wavefield (three‐component vector in 3D media), t is time, ∇ is the gradient with
respect to the space coordinates, f is the body force (source term), ρ is the density, λ and μ are the Lamé pa-
rameters. Equation 1 can be restated concisely with an integro‐differential operator L as

Lu = f. (2)

In seismology the medium m is commonly parametrized by P‐wave velocity VP and S‐wave velocity VS:

VP =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λ + 2μ
ρ

√

and VS =
̅̅̅̅μ
ρ

√

. (3)

The direct mapping from physical parameters m to observed waveforms d is nonlinear and unknown in closed
form:

d = G(m). (4)

Based on the universal approximation theorem, neural operators can approximate arbitrary nonlinear continuous
operators (Hornik et al., 1989; Kovachki et al., 2023). The solution operator can be parameterized much more
efficiently in memory when solving Equation 2 in the frequency domain (i.e., the Helmholtz equation) than in the
time domain (Huang & Alkhalifah, 2025; Kong et al., 2025; Zou et al., 2024). This is because different frequency
components can be solved individually and, thus, parallelized. In this study, we employ the Helmholtz Neural
Operator (HNO) proposed by Zou et al. (2024). The HNO computes the solution for each frequency component
independently by defining the batch of data at the frequency level. In other words, a batch can contain multiple
frequency components due to data shuffling. We use a single HNO to learn the entire frequency band of interest
(0.1–0.5 Hz), although Kong et al. (2025) found that using multiple models to handle different frequencies
slightly improves performance. Solutions in the time and frequency domains can be related via the (inverse)
Fourier transform. We construct a U‐shaped HNO comprising L = 8 inner layers of Fourier Neural Operators
(FNOs) (Z. Li et al., 2020a), followed by a Graph Neural Operator (GNO) (Z. Li et al., 2020b), to predict the
waveforms at the free surface (data, denoted by d̂):

v0 (x) = (P a) (x),

vl+1 (x) = σ(Wl vl (x) + F− 1 (F(κl) ⋅F(vl)) (x)) where l = 0,… ,L − 1,

vgno (x) =∫
Br(x)

κ(x,y,vL) vL(y) dy,

d̂(x) = (Q vgno) (x),

(5)

where a is the input including VP, VS, the source location, and a constant function indicating the frequency value,
d̂ is the predicted data for the given frequency component (including the real and imaginary parts), vl is input to
the l + 1th FNO layer (l = 0,… ,7) or the GNO (l = 8), vgno is the GNO output, P is a point‐wise operator used
to lift the dimension,Q is used to project the output to the desired dimension,Wl acts as a residual connection, κl is
a parametric kernel function, F andF− 1 denote the Fourier and inverse Fourier transforms, respectively, and σ is a
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nonlinear activation function, which we set as GELU (Hendrycks & Gimpel, 2016). The GNO uses a kernel
function κ parameterized as a three‐layer neural network, which takes positional information and the output of the
last FNO layer as input. Br denotes the predefined neighborhood of the queried position x, defined as all points
below the corresponding surface location for computational efficiency. We use FNOs to speed up the integral
calculation, and the U‐shape allows for a deeper model and skip connections (Z. Li et al., 2020; Rahman
et al., 2022; Ronneberger et al., 2015). The GNO can improve predictions at queried points and provide greater
data efficiency (Zou et al., 2024). Figure 1 illustrates the model architecture and Table S1 in Supporting Infor-
mation S1 provides the details in each neural operator layer.

In conventional FWI, the solution is obtained by minimizing a scalar‐valued objective function Φ, which can, for
example, be defined as half the squared ℓ2‐norm of the data residual:

Φ =
1
2
⃦
⃦d̂ − d

⃦
⃦2
2 where d̂ = Su, (6)

where d̂ is the modeled (predicted) waveforms queried at receivers through a sampling operator S and d is the
observed data. The parameters of interest m are updated iteratively using a gradient‐based method. Using the
adjoint‐state method, the gradients of the objective with respect to parameters of interest can be estimated as the

Figure 1. Model architecture. a is the input given by VP, VS, the source location, and a constant function indicating the frequency value. d̂ is the predicted data. P is a
point‐wise operator used to lift the dimension. Q is used to project the output to the desired dimension. B is the inner integral operator chosen as the FNO, in which v is
input to the layer, F and F− 1 denote the Fourier and inverse Fourier transforms, respectively,R is a linear operator,W acts as a residual connection, and σ is a nonlinear
activation function. Λ is a GNO used to query the waveforms at the free surface. Blue circles denote concatenation along the channel dimension.
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cross‐correlation between the forward wavefield u and the adjoint wavefield u∗ at zero time lag, weighted by an
analytically derived term (Louboutin et al., 2019):

∇mΦ = − uT (
∂L
∂m)

T

u∗. (7)

The adjoint wavefield u∗ is generated by back‐propagating the residual δd in the medium:

LTu∗ = STδd where δd = d̂ − d. (8)

The adjoint‐state method requires the initial model to be sufficiently accurate, with a travel‐time error of less than
half the period (Alkhalifah, 2016; Beydoun & Tarantola, 1988; Virieux & Operto, 2009). Otherwise, the cycle‐
skipping phenomenon may arise, leading to convergence to a local minimum (Gauthier et al., 1986; Pladys
et al., 2021).

With neural operators (or other machine learning methods developed on the PyTorch platform), the gradients of
the objective with respect to any parameters in the computational graph are automatically computed through
back‐propagation (Rumelhart et al., 1986). This is termed the reverse‐mode AD (Baydin et al., 2018;
Elliott, 2018). Provided that all the functions, expressions, and control flow structures used in neural operators are
differentiable and compatible with AD, the adjoint simulation can be replaced by back‐propagation (LeCun
et al., 1988). It has been shown that the adjoint‐state method and reverse‐mode AD are mathematically equivalent
(Richardson, 2018; W. Wang et al., 2021; W. Zhu et al., 2021). However, the HNO‐AD method eliminates the
need to manually derive the gradient in Equation 7 on a case‐by‐case basis. Moreover, it can take advantage of
state‐of‐the‐art optimization techniques built into PyTorch—such as mini‐batching and Adam—which help
improve the optimization dynamics of FWI and mitigate cycle‐skipping. Adam, in particular, a first‐order
gradient‐based optimization algorithm that dynamically rescales the gradients for each parameter based on its
past gradients and their squares (Kingma & Ba, 2014), has been shown to outperform other optimizers such as
SGD and limited‐memory Broyden‐Fletcher‐Goldfarb‐Shanno (L‐BFGS) (Bernal‐Romero & Iturrarán‐
Viveros, 2021; Richardson, 2018; J. Sun et al., 2020).

We summarize the differences between the HNO‐AD and adjoint‐state methods as follows:

1. Forward modeling: In the adjoint‐state method, forward modeling is performed by numerically solving the
wave equation. In the HNO‐AD method, it is performed via a mapping learned by a neural operator.

2. Gradient computation: In the adjoint‐state method, the gradient is analytically derived and computed by
running an adjoint simulation. In the HNO‐AD method, this is replaced by automatic back‐propagation.

2.2. Data‐Driven Training

In this study, we train a single 2D HNO for linear nodal arrays across the northern LA basins. The model is trained
in a supervised learning manner using synthetic data generated from a spectral element method (SEM) using the
software SALVUS (Afanasiev et al., 2019). The computational domain is set to 80 km (horizontal) × 40 km
(vertical) on a 256 × 128 mesh, which accommodates the longest seismic line, SB1, in the area. We simulate 40‐
s‐duration wavefields with a time step of 0.001 s, which are excited by a vertical force and Ricker wavelet time
function with a central frequency of 0.3 Hz. For ambient noise data applications, the source is randomly placed
along the free surface from a uniform distribution of horizontal position. The VP and VS models are generated
from random fields sampled around a background 1D model, which is averaged along the SB1 line from a
reference model named CVM‐S4.26 (Lee et al., 2014). The parameters for the random fields are provided in Table
S2 in Supporting Information S1. The density models are derived from VP using the empirical relation by
Brocher (2005), which are input to SALVUS but not to the HNO. The time‐domain solutions from the SEM solver
are Fourier‐transformed and filtered to the frequency band of interest (0.1–0.5 Hz) for use with the HNO.We train
an HNO using 27,000 simulations and validate the model performance using 3,000 simulations (where a
simulation means a single source and a particular velocity model). We define the loss function as a combination of
relative ℓ1‐norm and ℓ2‐norm of the data residual:

Journal of Geophysical Research: Solid Earth 10.1029/2025JB031624

ZOU ET AL. 5 of 18

 21699356, 2025, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2025JB

031624 by U
niversity O

f U
tah, W

iley O
nline L

ibrary on [30/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Loss = 0.95
⃦
⃦d − d̂

⃦
⃦
1

‖d‖1
+ 0.05

⃦
⃦d − d̂

⃦
⃦
2

‖d‖2
, (9)

where d and d̂ denote the true and predicted data, respectively. We use an
Adam optimizer with a learning rate of 0.001 and a scheduler that decays the
learning rate by half every 30 epochs. The batch size is 256. Figure S1 in
Supporting Information S1 shows the loss curves. The full training process
took 2 days with 8 NVIDIA RTX A6000 GPUs. Note that the training is a
one‐time effort and no further training is required for different seismic lines or
the inversion stage, granted the data have a similar scale. Table 1 compares
the time consumed by SALVUS and the trained HNO in forward modeling
and FWI under the same configuration. In performing FWI for this 2D case,

the HNO with AD is approximately two orders of magnitude faster than the SEM with the adjoint method. The
computational advantage will only be greater in 3D (Zou et al., 2024).

3. Synthetic Tests
To test generalization, we first evaluate the HNO performance with the synthetic data generated from a com-
munity velocity model named CVM‐S4.26 (Lee et al., 2014). We extract a profile of the 3D CVM‐S4.26 along the
longest seismic line, SB1, in the BASIN survey. This model is never explicitly seen by the HNO. Figure 2 shows
the HNO‐predicted results for a sample shot excited by a vertical force and Ricker wavelet as in training, with the
SALVUS‐simulated waveforms serving as the ground truth. The direct output of the HNO is in the frequency
domain (0.1–0.5 Hz) and is inverse Fourier‐transformed to the time domain for visualization purposes. The
forward prediction by the HNO is not perfect with a cross‐correlation coefficient of 0.98, but we will show that it
is sufficiently accurate in the upcoming FWI experiment.

Before the inversion, we compute the sensitivity kernels for the HNO‐AD method, following the definition in
Tromp et al. (2005). In Figure 3, we put sources and receivers at nodes on the free surface and sum the gradients of
the misfit with respect to the velocity parameters over all source‐receiver pairs. The misfit is defined as the
squared error between the HNO‐predicted data with a 1D initial model and the SALVUS‐simulated data with the
true model (CVM‐S4.26). The 1D initial model is obtained by horizontally averaging the CVM‐S4.26 profile. We
average the sensitivity kernels horizontally to obtain functions of depth. We can see that the sensitivity drops

Table 1
Comparison of Time Consumed by SALVUS and HNO in Forward Modeling
and FWI

SALVUS HNO

Forward modeling 7.18 s 0.18 s

FWI 128.51 s 0.45 s

Note. The experiments are conducted on a community model called
CVM‐S4.26 using a single NVIDIA RTX A6000 GPU. The forward
modeling time is measured for a single event with one source and 234 re-
ceivers on the free surface. The FWI time is measured for one tomographic
iteration for the same event configuration.

Figure 2. Comparing simulations for velocity model CVM‐S4.26 between HNO and baseline method. Source location is marked by a white star.
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dramatically with depth, which indicates that updates to deeper parts of the velocity models are less reliable.
Therefore, we will only present the inversion results for the top 10 km hereafter.

In the inversion stage, we freeze the HNO parameters and update VP and VS simultaneously with gradients
calculated from AD. The inversion is also performed in the frequency domain, and the objective function is
defined as the mean squared error (MSE) between the HNO‐predicted and SALVUS‐simulated data. For use with
ambient noise data where the amplitude is often not well‐defined, we normalize the amplitude to unity before
computing the MSE. This is done by dividing the frequency‐domain data, a complex‐valued quantity, by its
amplitude. We add no regularization term to the objective function but implicitly impose some regularization by
smoothing the gradients with a Gaussian filter (Tape et al., 2010; H. Zhu et al., 2015). The smoothing radius is set
to 3× grid spacing (945 m) in both horizontal and vertical directions. We average the CVM‐S4.26 profile hor-
izontally to get a 1D initial model. We start with lower frequency data and gradually feed in higher frequency
components (from 0.1 to 0.5 Hz), which is also common practice in traditional FWI to mitigate cycle‐skipping (K.
Wang et al., 2018; C. Zhang et al., 2018). This is because skipping one cycle in lower frequency data requires
larger velocity variation, whereas velocity variation is smaller at greater depth—where lower frequency data has
better sensitivity. Also, the neural operator performs more accurately for lower frequencies (Zou et al., 2024).
Figure 4 shows the MSE for the full frequency band in the inversion process. We use an Adam optimizer with a

learning rate of 0.05 and a scheduler that decays the learning rate by half every
5 epochs. For simplicity, we use a fixed number of epochs for each frequency
band, balancing accuracy and efficiency, although adapting the epoch count
based on convergence may be a better option. The gradients are summed over
a mini‐batch of 64 data points, where a single data point corresponds to a
single frequency and a single source.

We conduct FWI experiments on both noise‐free data and data perturbed with
different levels of Gaussian random noise. We activate 234 sources along the
free surface of the CVM‐S4.26 slice for SB1, located at the nodes. The re-
ceivers are also placed at the nodes. Figure 5 shows a sample shot of synthetic
data perturbed with different levels of noise. The noise is generated from a
zero‐mean Gaussian distribution with a standard deviation (SD) equal to a
factor times the SD of the noise‐free data. The corresponding FWI results for
noise‐free data and noisy data are displayed in Figure 6. The noise‐free
inversion in the second row clearly reveals the basin model, demonstrating
the forward modeling accuracy of the HNO from another perspective. The
deeper part of the model is not well resolved because the source‐receiver
geometry and frequency content limit sensitivity to near‐surface regions.
When 5× noise is added, the FWI results maintain good quality, even though
the seismic signal already becomes unrecognizable to the eye. This could be

Figure 3. Sensitivity kernels for the HNO‐AD method, defined as the gradients of the misfit with respect to the velocity parameters, which are summed over all source‐
receiver pairs and averaged horizontally. The misfit is defined as the squared error between the HNO‐predicted data with a 1D initial model and the SALVUS‐simulated
data with the true model (CVM‐S4.26). The sensitivity values for VP and VS are each normalized by its maximum amplitude.

Figure 4. Overall MSE (mean squared error) in the FWI process, where
higher frequency data is progressively incorporated. We use an Adam
optimizer with a learning rate of 0.05 and a scheduler that decays the
learning rate by half every 5 epochs. The batch size is 64.
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explained by the fact that FNOs are global operators, and the zero‐mean noise might be partially averaged out in
the kernel. However, real noise typically does not behave this nicely. We increase the noise level until the
inversion is on the verge of collapse, with a perturbation of 10× noise that totally obliterates the waveforms.

These synthetic tests serve to verify the generalizability of the neural operator trained with random fields and
noise‐free data to realistic velocity structures and noisy data, supervised by some definition of ground truth that is
unavailable in real data. They show the excellent performance of the HNO‐AD method in low signal‐to‐noise
ratio (SNR) situations. Additionally, the entire FWI process can be completed in minutes. In contrast, FWI
with the adjoint‐state method takes 16 hours for 10 iterations and makes little progress with the same 1D
initialization even for noise‐free data (Figure S2 in Supporting Information S1). We attribute the main difference
to the use of mini‐batch Adam optimization in the HNO‐ADmethod, which is not yet supported by SALVUS.We
provide another generalization test in Figure S3 in Supporting Information S1 for a velocity model obtained from
a ray‐theory‐based method (Y. Li et al., 2023), which is fully independent of the training process.

4. Application to Real Seismic Data
We apply the trained neural operator to a real‐world ambient noise tomography example. The real data comes
from the BASIN survey that deployed 10 linear nodal arrays in the San Gabriel (SG), Chino, and San Bernardino
(SB) basins north of LA (Clayton et al., 2019). A total of 758 Fairfield ZLand three‐component nodes with a
corner frequency of 5 Hz recorded ambient noise for approximately a month. Each line consisted of 14–260
geophones, spaced approximately 0.25 km apart. The geometry of the survey was designed to detect subsur-
face variations up to 0.5 km in horizontal scale. Figure 7 shows a map of the study area and station configuration.
The sedimentary formations date from the opening of the LA basin in the Miocene (Wright, 1991). Details in the
geologic and tectonic setting can be found in Villa et al. (2023) and Ghose et al. (2023).

We take the EGF derived from ambient noise cross‐correlation as the direct observation:

Figure 5. A sample shot of synthetic data perturbed with different levels of noise. The noise is generated from a zero‐mean
Gaussian distribution with an SD equal to a factor times the SD of the noise‐free data.
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GAB(t) = −
d
dt
(
CAB(t) + CAB(− t)

2
) where t> 0, (10)

where GAB(t) is the displacement EGF between two stations A and B, and CAB(t) is the cross‐correlation between
the seismograms recorded at these two stations. The positive and negative lags of CAB are averaged to enhance the
SNR and to mitigate the effect of inhomogeneous source distribution (Lin et al., 2008). Although more effective
methods for addressing non‐diffuse noise fields have been explored (X. Liu, 2020; X. Liu et al., 2023), this is not
the focus of this study, and we follow the standard procedure. Our cross‐correlation workflow is based on Bensen
et al. (2007) and Y. Li et al. (2023). We correlate both daytime and nighttime recordings from the 1‐month
deployment, since using only nighttime data merely reduced the anthropogenic noise in a minor way (Y. Li
et al., 2023). One‐hour data segments are correlated and stacked to derive the final correlation. We convert the
three‐component data from the vertical‐north‐east (ZNE) to the vertical‐radial‐transverse (ZRT) coordinate
system. The particle motion of Rayleigh waves lies in the ZR plane, whereas Love waves involve mainly hor-
izontal motion in the transverse direction. We demean the raw seismograms and apply a bandpass filter between

Figure 6. Synthetic FWI results for noise‐free data and noisy data.

Journal of Geophysical Research: Solid Earth 10.1029/2025JB031624

ZOU ET AL. 9 of 18

 21699356, 2025, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2025JB

031624 by U
niversity O

f U
tah, W

iley O
nline L

ibrary on [30/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



0.1 and 2 Hz. Prior to the correlation, we perform temporal normalization to suppress the effects of earthquakes
and apply spectral whitening to broaden the effective bandwidth.

The EGF obtained from cross‐correlation accounts for wave physics in a 3D medium, to which a phase shift of
π/4 must be applied prior to a 2D inversion (Forbriger et al., 2014; Schäfer et al., 2014; C. Zhang et al., 2018).
Figure S4 in Supporting Information S1 shows the effect of this transformation. A factor for amplitude correction
related to geometrical spreading is further needed (C. Zhang et al., 2018), but we focus solely on the phase in-
formation, as the amplitude recovered in ANT is not well‐defined. We have verified through synthetic tests that
the phase information is sufficient to reconstruct the velocity models (Figure 6). We eliminate the effect of
amplitude differences between 2D and 3D by normalizing the amplitude to unity during inversion. This also helps
to bridge the gap between the synthetic Green's function (SGF) and EGF, as they have different source band-
widths. We match the Z‐Z and Z‐R cross‐correlations with the vertical and horizontal waveforms predicted by the
HNO, respectively. We mainly retrieve Rayleigh waves with particle motion confined in a 2D plane. In this study,
we follow the principle of Green's function retrieval, while Tromp et al. (2010), Sager et al. (2018, 2020), and Tsai
et al. (2024) established the full waveform ambient noise inversion technique that goes beyond that by inter-
preting correlation functions as self‐consistent observables.

We maintain most settings from the previous synthetic FWI results in carrying out the real data experiments,
except we include an additional regularization term that encourages the inverted VP and VS to respect
Brocher (2005):

Lreg =
1
M
∑
M

i=1
(VPi − (0.9409 + 2.0947VSi − 0.8206V

2
Si + 0.2683V

3
Si − 0.0251V

4
Si))

2, (11)

whereM is the number of grid points on which the velocity models are discretized. This is to constrain VP, which
is not well constrained by surface waves.

We begin the real data FWI with the longest line, SB1, which extends about 80 km fromwest to east. Beneath SB1
lie two significant basins—the deeper SG basin in the west and the shallower Chino basin in the east. The depth of
the sediment‐basement interface has been constrained by Villa et al. (2023). In addition to this 3D basin depth
model and the CVM‐S4.26 (Lee et al., 2014), another reference is from Y. Li et al. (2023) who constructed a 3D
shear wave velocity model for the same area through surface wave dispersion analysis. We start the inversion with
a 1Dmodel calculated from this reference model, which results in Figure 8a. Overall, the inverted velocity models
reveal basin structures that align well with Villa et al. (2023), capturing significant features including the deeper
and more heterogeneous SG basin in the west and the low‐velocity zone at the edge of the relatively flat Chino
basin adjacent to the SB basin. We demonstrate the robustness of this result through another two initial models,
the smoothed models from Y. Li et al. (2023) (Figure 8b) and CVM‐S4.26 (Figure 8c). Results from these
different initial models show excellent overall consistency, although they differ in details. In particular, the 1D

Figure 7. Map of the northern Los Angeles basins, adapted from Zou and Clayton (2024). The study region is outlined by the
white polygon. Triangles in different colors show nodal lines deployed in different time periods.
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Figure 8. Inversion results for SB1 with different initial models including the (a) 1D and (b) smoothedmodels fromY. Li et al. (2023), and (c) the smoothed CVM‐S4.26.
The along‐profile distance increases from west to east. The basin bottom from Villa et al. (2023) is delineated with black dashed lines for reference.
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initial model can achieve performance comparable to that of models with more detailed priors. The corresponding
error curves are provided in Figure S5 in Supporting Information S1.

The incorporation of higher frequency data in later stages of FWI contributes to refining the shallower structure
but also introduces high‐frequency noise. Some of the noise can potentially be suppressed using a signal window.
Meanwhile, the inaccuracy of the neural operator in forward modeling introduces another source of uncertainty.
We compare SALVUS‐simulated waveforms (SGFs) using the CVM‐S4.26, model from Y. Li et al. (2023), and
our model from Figure 8a with the EGF for SB1 in Figure 9. The corresponding waveform difference is plotted in
Figure S6 in Supporting Information S1. The point here is not to conclude that our model is better than others, but
rather to demonstrate that the HNO‐AD method can achieve accuracy comparable to traditional methods at a
much lower cost in terms of time and effort. Also note that our model starts with a 1D initial model, while the
other two models have stronger priors (Lee et al., 2014; Y. Li et al., 2023).

The same neural operator can be directly applied to any seismic line in the study region, because it was trained to
cover the longest one. While the model cannot extrapolate to larger domains than it was trained on, application to
smaller domains is straightforward by simply extracting a subset of the inversion result. Additionally, no specific
orientation is assumed for the 2D profiles, since the training data are generated in a Cartesian coordinate system
without reference to geological orientation. This ensures that the model is not biased toward any particular di-
rection. We show another two examples for SB4 and SG1 in Figures 10 and 11, respectively. For SB4 that crossed
the Chino basin from north to south, our inversion result reveals a low‐velocity zone at the southern end near the
Chino fault (Figure 7), which is also seen in the CVM‐S4.26 and Y. Li et al. (2023). The low‐velocity anomalies
between 0 and 15 km present in Y. Li et al. (2023) are absent in both our model and CVM‐S4.26. While the
authors did not provide specific interpretation, the seismic line crossed the Red Hill fault at approximately 5 km,

Figure 9. Examples of SALVUS‐simulated waveforms (SGFs) using the CVM‐S4.26, model from Y. Li et al. (2023), and our model from Figure 8a compared with the
EGF for SB1. Only VS is plotted in the top left for simplicity. The frequency band of the data is 0.2–0.5 Hz. In plotting, the waveform is normalized by trace and every
third trace is displayed.
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which could explain the observed discontinuity (if it is not an artifact). Interestingly, our model shows a velocity
jump near the Red Hill fault. Overall, the tomography for SB4 displays a shallow (approximately 2 km) sedi-
mentary basin in agreement with previous studies. The sediment‐basement interface beneath SG1 is much deeper,
as captured in all the displayed models. Our result for SG1 aligns with that for SB1 in the SG basin in terms of
basin depth but captures less heterogeneity, which might be limited by the array length. These inversions can be
completed in a few minutes.

5. Discussion
In this study, we have demonstrated the functionality of neural operators in realistic ambient noise full waveform
inversion through a 2D case. Provided sufficient computational resources, the proposed method is expected to

Figure 10. Inversion results for SB4, in comparison to the CVM‐S4.26 and model from Y. Li et al. (2023). Only VS is plotted
for simplicity. The along‐profile distance increases from north to south. The basin bottom from Villa et al. (2023) is
delineated with black dashed lines for reference.

Figure 11. Inversion results for SG1, in comparison to the CVM‐S4.26 and model from Y. Li et al. (2023). Only VS is plotted
for simplicity. The along‐profile distance increases from north to south. The basin bottom from Villa et al. (2023) is
delineated with black dashed lines for reference.
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work in 3Dwithout fundamental changes, while providing increased computational advantages over conventional
methods. Because our model is trained within the framework of supervised learning, the fundamental assumption
is that training and testing data follow the same distribution. While this assumption seldom holds strictly in
practice, it serves as a reference for identifying when model predictions are likely to fail—for example, in cases
where the velocity parameters deviate significantly from the training distribution. We show the training distri-
butions of VP and VS as a function of depth in Figure 12, allowing users to decide whether to directly use our
model or perform additional training. Even in cases where re‐training is necessary, a pre‐trained model enables
transfer learning that can greatly improve learning efficiency (Yosinski et al., 2014). Another aspect is that the
model is not expected to extrapolate to larger physical domains than which it was trained on (80 km length by
40 km depth) or to frequencies outside the preset band of interest.

In performing FWI, we use gradient descent with AD instead of training a reverse model that directly maps from
observed waveforms to velocity parameters. Although such end‐to‐end approaches are even faster (Kazei
et al., 2021; Moseley et al., 2020; Wu& Lin, 2019), they provide only a single solution without supervision on the
data misfit. Such approaches are arguably not ideal for inverse problems because they are ill‐posed and non‐
unique, unless they are combined with uncertainty quantification methods. We define the misfit function for
inversion as the MSE in the frequency domain for convenient use with HNO, but it would be feasible and
worthwhile to explore different misfit functions in either the frequency or time domain (Bozdağ et al., 2011;
Métivier et al., 2018; Fournier & Oldenburg, 2019; Sambridge et al., 2022; B. Sun & Alkhalifah, 2019) to better
tackle the non‐uniqueness and cycle‐skipping problems. It is important to note, however, that the AD method
requires a differentiable loss function, or some soft approximation to address discontinuity (Y. Liu et al., 2023).

The rapid developments in compute capabilities and machine learning research have positioned data‐driven
approaches as a promising new perspective for FWI. On one hand, data‐driven approaches can greatly accel-
erate modeling and inversion. On the other hand, they rely on data provided by physics‐driven approaches and,
therefore, will also benefit from any advancements in those approaches. In this study, we integrate these two types
of approaches by first generating training data with a physics‐driven solver and then training a data‐driven model
as a surrogate solver. Another way is to incorporate physics into the training loss, making it possible to remove the
external solver (Z. Li et al., 2024; Raissi et al., 2019; Rasht‐Behesht et al., 2022; Ren et al., 2024; Song &
Alkhalifah, 2021). While training with physics loss alone is challenging, combining it with a data loss has the
potential to improve generalization ability and further benefit inversion.

6. Conclusions
We present the first application of neural operators in ambient noise full waveform inversion using several real
seismic data sets from linear nodal arrays distributed across the northern LA basins. We show that a Helmholtz
Neural Operator trained on random velocity fields can generalize to realistic velocity structures, while demon-
strating robustness to random noise. In performing FWI with automatic differentiation, the neural operator is two
orders of magnitude faster than the conventional spectral element method and eliminates the need for manual
gradient derivation. The HNO‐AD method, built on PyTorch, offers enhanced flexibility to escape poor local
minima. The tomography results from real data align with multiple previous studies and can be obtained with
minimal additional effort. We provide a trained model that can be directly applied to different regions, as long as
the velocity parameters fall within the training distribution.

Figure 12. Training distributions of VP and VS as a function of depth.
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