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S U M M A R Y
The growth of the Earthscope/USArray Transportable Array (TA) has prompted the devel-
opment of new methods in surface wave tomography that track phase fronts across the array
and map the traveltime field for each earthquake or for each station from ambient noise.
Directionally dependent phase velocities are determined locally by measuring the gradient of
the observed traveltime field without the performance of a formal inversion. This method is
based on the eikonal equation and is, therefore, referred to as ‘eikonal tomography’. Eikonal
tomography is a bent-ray theoretic method, but does not account for finite frequency effects
such as wave interference, wave front healing, or backward scattering. This shortcoming poten-
tially may lead to both systematic bias and random error in the phase velocity measurements,
which would be particularly important at the longer periods studied with earthquakes. It is
shown here that eikonal tomography can be improved by using amplitude measurements to
construct a geographically localized correction via the Helmholtz equation. This procedure
should be thought of as a finite-frequency correction that does not require the construction
of finite-frequency kernels and is referred to as ‘Helmholtz tomography’. We demonstrate
the method with Rayleigh wave measurements following earthquakes between periods of 30
and 100 s in the western US using data from the TA. With Helmholtz tomography at long
periods (>50 s): (1) resolution of small-scale isotropic structures, which correspond to known
geological features, is improved, (2) uncertainties in the isotropic phase velocity maps are
reduced, (3) the directionally dependent phase velocity measurements are less scattered, (4)
spurious 1-psi azimuthal anisotropy near significant isotropic structural contrasts is reduced,
and (5) estimates of 2-psi anisotropy are better correlated across periods.

Key words: Surface waves and free oscillations; Seismic anisotropy; Seismic tomography;
Wave propagation.

1 I N T RO D U C T I O N

Lin et al. (2009, 2011) presented a new surface wave tomography
method that was applied to earthquake data and ambient noise cross-
correlations recorded by the EarthScope/USArray Transportable
Array across the western US (Fig. 1). For each earthquake or sta-
tion in the context of ambient noise, the method first empirically
tracks the propagation of a phase front across the array to determine
the phase traveltime map and then computes the gradient across each
map to estimate the phase velocity at each location. The theoretical
justification for this method is based on the eikonal equation (eq. 1)
and the method is, therefore, referred to as eikonal tomography.
With multiple earthquakes or multiple stations for ambient noise,
the repeated measurements at a single location are summarized sta-
tistically to estimate both the isotropic and azimuthally anisotropic
components of phase velocity with attendant uncertainties. Similar
approaches have been taken by Pollitz (2008) and Liang & Langston
(2009) for earthquake data. In contrast with traditional tomographic

methods (e.g. Trampert & Woodhouse 1996; Ekstrom et al. 1997;
Barmin et al. 2001), the inverse operator of eikonal tomography
is simply the spatial gradient applied to the phase traveltime map,
which is a purely local operator that does not depend on construct-
ing the forward operator. No formal inversion is performed in this
method, therefore, which adds to the method’s simplicity and the
speed of its application. The localized nature of the ‘inversion’ also
allows for direct point-by-point inspection of the results, which may
be expressed as plots of azimuthally dependent phase velocities as
Lin et al. (2009, 2011) illustrate.

The purpose of this paper is to discuss the limitations of eikonal
tomography and to present the means to move beyond it. The basis
for eikonal tomography is the eikonal equation

k̂i (r)

c′
i

∼= ∇τi (r), (1)

which can be derived from the solution to the 2-D Helmholtz wave
equation (e.g. Wielandt 1993), by ignoring the effect of the term in
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Figure 1. The USArray Transportable Array (TA) stations used in this study
are identified by black triangles. The two stars identify locations used later
in the paper. Red lines mark the tectonic boundaries in the western US.

the Laplacian of the amplitude field

1

ci (r)2
= |∇τi (r)|2 − ∇2 Ai (r)

Ai (r)ω2
, (2)

where i is the earthquake index, k̂ is the direction of wave propaga-
tion, τ is the phase traveltime, A is the wave amplitude, r is position,
and ω is the angular frequency. Note that the Helmholtz wave equa-
tion describes the properties of local wave propagation and does
not depend on source properties such as the radiation pattern. The
phase velocities c′ and c are explicitly contrasted here. We refer to
c′ as the ‘apparent’ (sometimes referred to as the ‘dynamic’) phase
velocity and c as the ‘corrected’ phase velocity (sometimes referred
to as ‘structural’ phase velocity). The eikonal equation (eq. 1) is
only approximately accurate and the apparent and corrected phase
velocities will be approximately equal (c′ ∼= c) when the ampli-
tude varies sufficiently smoothly or the frequency is high enough
so that the second term on the right of eq. (2) will be much smaller
than the first term. We refer to the term in eq. (2) involving the
Laplacian of the amplitude (without the negative sign) as the am-
plitude correction term for the Eikonal equation. This term defines
the difference between the apparent and corrected phase velocities.
In the following, we will refer to results based on eqs. (1) and (2) as
the apparent and corrected phase velocity maps, respectively, which
should be distinguished from the intrinsic phase velocity for the real
earth.

Eikonal tomography (based on eq. 1) is a geometrical ray theoretic
method. Several theoretical and numerical studies (e.g. Wielandt
1993; Friederich et al. 2000; Bodin & Maupin 2008) have shown
that when the wavelength is comparable to or larger than the dimen-
sion of a structural anomaly, ignoring the amplitude correction term
in eq. (2) can cause underestimation of the anomaly amplitude and
the introduction of isotropic bias into inferred azimuthal anisotropy.
While Lin et al. (2009) presented eikonal tomography through appli-
cations to ambient noise cross-correlation measurements (Bensen
et al. 2007; Lin et al. 2008), the method was extended to earth-

quake data by Lin et al. (2011) to constrain azimuthal anisotropy
up to ∼50 s period. Lin & Ritzwoller (2011) demonstrated isotropic
bias in azimuthal anisotropy measurements above ∼50 s period and
showed that the observed bias increases with period and can be
explained as off-ray sensitivity or a finite frequency effect. In par-
ticular, they identified the existence of a strong non-physical 1-psi
component of the azimuthal anisotropy measurements (360◦ peri-
odicity), which results from backscattering in the neighbourhood of
stations. Similar bias is also observed for ambient noise applications
at long periods (Ritzwoller et al. 2011).

Accurately estimating long period (>50 s) phase velocity maps is
desired to be able to resolve upper mantle structure. Unlike ambient
noise measurements where the amplitude information is degraded or
obscured during temporal and frequency normalization (e.g. Bensen
et al. 2007; Lin et al. 2007), the amplitude of earthquake signals can
be measured directly along with phase traveltimes. This provides the
possibility to compute the amplitude term in the Helmholtz equation
(e.g. Pollitz & Snoke 2010). Whether earthquake amplitudes provide
a meaningful and accurate correction to Eikonal tomography is the
motivation for this study.

Amplitude measurements have been used in both global (e.g.
Dalton & Ekstrom 2006) and regional (e.g. Yang & Forsyth 2006;
Pollitz 2008; Yang et al. 2008) tomography to constrain surface wave
phase velocity structures. In the regional methods, to achieve the
high resolution desired, phase and amplitude measurements across
an array are used jointly to invert for the properties of the incoming
waves along with the structural variation. To stabilize the inversion,
the incoming waves are often assumed to be the superposition of a
few basis functions such as plane waves. Analytical finite frequency
kernels (e.g. Zhou et al. 2004) are used in the inversion to account for
the waveform complexity due to internal structural heterogeneities.
Recently, Pollitz & Snoke (2010) demonstrated a new approach that
determines phase velocity structures and wave properties locally
through a sub-array configuration. When the subarray is contained
within a small region, a homogenous phase velocity structure can
then be assumed and hence finite frequency kernels are not required.
In essence, this local inversion approach is very similar to the idea of
eikonal tomography (Lin et al. 2009) and the Helmholtz tomography
described in this study although no assumption about the form of
the incoming wave is made here. Due to the similarity of theory and
approach involved, we expect our results to be largely consistent
with the results presented by Pollitz & Snoke (2010). The focus
here, however, is to study the effect of the amplitude correction on
the phase velocity measurements and to evaluate the importance
of the finite frequency effect on both isotropic and azimuthally
anisotropic results.

In this study, we apply both phase front tracking and ampli-
tude measurement to Rayleigh wave tomography between 30 and
100 s period across the USArray in the western US (Fig. 1) based
on earthquake data (Fig. 2a). For each earthquake, the resulting
phase traveltime and amplitude maps are used to estimate the ap-
parent (c′) and corrected (c) phase velocity maps based on eqs. (1)
and (2), respectively. We show that amplitude measurements are
strongly correlated with phase bias and can be used to account
for finite frequency effects. We present several clear lines of evi-
dence that Helmholtz tomography outperforms eikonal tomography,
particularly at long periods (>50 s). This evidence includes (1) bet-
ter resolved small-scale isotropic anomalies, which correspond to
known geological features, (2) smaller uncertainties in the isotropic
phase speed maps, (3) less scattered directionally dependent phase
velocity measurements, (4) reduced amplitude of the spurious 1-
psi component of azimuthal anisotropy, and (5) better correlation
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Figure 2. (a) The earthquakes used in this study. Circles mark the location of the earthquakes, the star is the centre of our study region, and the lines between
circles and the star are great-circle paths. The two green circles and paths mark the earthquakes used in Figs 3 and 4 and the blue circle and path mark the
earthquake used in Fig. 19. (b) Number of events with at least 50 stations with good measurements at each period.

between the observed 2-psi (180◦ periodicity) azimuthal anisotropy
between different periods.

2 M E T H O D S

To demonstrate the Helmholtz tomography method we use all US-
Array stations (Fig. 1) and more than 700 earthquakes (Fig. 2a)
with M s > 5.0 that occurred between 2006 January 1 and 2010
April 11. For each earthquake and wave period, we apply automated
frequency–time analysis (FTAN; e.g. Levshin & Ritzwoller 2001;
Lin et al. 2007) to measure both the phase traveltime and the wave
amplitude for Rayleigh wave signals emitted from these earthquakes
across the array. We discard all measurements with signal-to-noise
ratio (SNR; Lin et al. 2008) less than 10. Due to the degradation of
data quality and SNR at long periods, the number of earthquakes
used in this study decreases with period (Fig. 2b).

2.1 Phase front tracking and amplitude measurement

Before estimating the phase velocity based on eqs. (1) and (2) with
the spatial gradient and Laplacian operators, we first construct the
phase traveltime and amplitude maps for each earthquake. For phase
traveltime measurements from the same earthquake, we correct the
relative 2π ambiguity for all measurements before further analysis.
The correction is made sequentially in an order determined from the
distance between each station to the centre of the array (from short
to long distances). To resolve the 2π ambiguity at a target station,
the average phase speed (phase traveltime divided by the great circle
distance) for the nearest corrected station is used as the reference
to predict the phase traveltime at the target station. The observed
phase traveltime at the target station is allowed to change within
the interval of one wave period until the misfit to the predicted
traveltime is minimized. We remove all measurements with a misfit
larger than 6 s. Only earthquakes with valid measurements from at
least 50 stations across the array are used for further analysis.

We follow the method described by Lin et al. (2009) to construct
both the phase traveltime (τ ) and amplitude (A) maps based on
a minimum curvature surface fitting technique (Smith & Wessel
1990). All available phase traveltime and amplitude measurements
are interpolated onto a 0.2◦ × 0.2◦ grid based on the surface fitting

method. As additional quality control, stations where the absolute
phase traveltime curvature is larger than 0.005 s2 km–2 or amplitude
curvature is larger than Aω2/c0

2 are discarded before constructing
the final traveltime and amplitude maps. The reference velocity c0

is set to 4 km s–1 in the amplitude selection criterion. Fig. 3 shows
examples of the resulting 60 s Rayleigh wave phase traveltime and
amplitude maps based on two earthquakes identified by green circles
in Fig. 2(a).

As demonstrated in Fig. 3, the observed phase and amplitude
fields are significantly different, which underscores the challenge
of using amplitude information in a tomographic inversion. While
the phase traveltime varies smoothly and monotonically in the di-
rection of wave propagation, both large and small-scale variations
are observed in the amplitude maps both in the direction of wave
propagation and transverse to it. For example, a prominent low am-
plitude stripe is observed in Fig. 3(b), which is probably caused by
wave–wave interference produced by structural variations outside
the array. Note, however, that kinks in the phase traveltime contours
for this event (Fig. 3a) probably result from the same structural
cause as the amplitude stripes (Fig. 3b). Some amplitude maps are
much smoother than others (e.g. Fig. 3d), which probably reflects
wave propagation conditions outside the array.

2.2 Event-specific apparent and corrected phase velocities

With the phase traveltime and amplitude maps, we compute the
gradient of the phase traveltime field and the Laplacian of the am-
plitude field to estimate the apparent and corrected phase velocity
based on eqs. (1) and (2), respectively. While the gradient varies
smoothly for a map computed with minimum curvature surface
fitting, the Laplacian is not necessarily well behaved. To amelio-
rate this technical difficulty and provide a smooth estimate of the
Laplacian, we first calculate the first spatial derivative in the lon-
gitudinal and latitudinal directions at all station locations where
amplitude measurements are available. We then re-apply the sur-
face fitting method to determine the first spatial derivative maps in
the longitudinal and latitudinal directions for the whole region of
the active array. The second spatial derivatives are then calculated,
but they now provide a smoothly varying estimate of the Lapla-
cian. It must be acknowledged that the methods we apply here to
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Figure 3. (a)–(b) The 60 s Rayleigh wave observed phase traveltime and amplitude maps for the 2009 April 7, earthquake near Kuril Islands (M s = 6.8). The
stations with available phase traveltime and amplitude measurements used to construct the maps are shown as triangles. Contours are separated by intervals of
60 s in (a) and 100 nm s–1 in (b). The arrow in (a) indicates the approximate direction of wave propagation. (c)–(d) Similar to (a)–(b) but for the 2007 February
14, earthquake near Easter Island (M s = 5.7). Contours in (d) are separated by intervals of 5 nm s–1.

fit the traveltime and amplitude surfaces and to calculate the Lapla-
cian of the amplitude field are not unique and are probably not
optimal. In particular, the Laplacian of the amplitude field is prob-
ably underestimated for small-scale amplitude variations (relative
to station spacing) based on minimum curvature surface fitting (see
Section 5.3).

To demonstrate the ability of the amplitude measurements to re-
duce the apparent bias in the traveltime (or phase) measurements,
Fig. 4 presents examples of an apparent phase velocity map defined
from eq. (1), the amplitude correction map (∇2 A/ω2 A) defined by
eq. (2), and the corrected phase velocity map also defined by eq.
(2). These results are all calculated from the phase traveltime and
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Figure 4. (a) The apparent phase velocity map derived from Fig. 3(a) based on eq. (1). (b) The amplitude correction term in eq. (2) derived from Fig. 3(b). (c)
The corrected phase velocity map derived from (a) and (b) based on eq. (2). Same as (a)–(c) but for results derived from Fig. 3(c) and (d).

amplitude maps shown in Fig. 3. Clear correlations are observed
between the apparent velocity anomalies and the amplitude correc-
tion surface for the 2009 Kuril Islands earthquake (Fig. 4a,b). Both
maps show a prominent stripe that presents as an apparent low ve-
locity trough in Fig. 4(a) and a high amplitude ridge in the Laplacian
surface in Fig. 4(b). This correlation is evidence that the amplitude
correction term can be used to suppress spurious apparent phase
velocity signals. In fact, the striped interference pattern is no longer
observed in the corrected phase velocity map (Fig. 4c) and vari-
ous prominent structural anomalies can now be seen including the
slow anomalies of the Yellowstone/Snake River Plain hot spot track
and the southern Rocky Mountains and the fast anomaly in south-
western Wyoming. The apparent phase velocity and the amplitude
correction maps for the 2007 Easter Island earthquake (Fig. 4d,e),
on the other hand, display a weaker correlation, which suggests that
wave interference is not as severe and the observed apparent phase
velocity better reflects regional-scale structures. This is consistent
with the difference in magnitude between the amplitude correction
term shown in Fig. 4(b) and (e). Nevertheless, the fast anomalies of
the subducted Juan de Fuca Plate and the Isabella anomaly near the
Sierras in southern California are better resolved in the corrected
phase velocity map (Fig. 4f).

3 I S O T RO P I C P H A S E V E L O C I T Y M A P S

We follow the methods described by Lin et al. (2009) to statistically
summarize measurements based on a large number of earthquakes
for each spatial location. Fig. 5 shows example distributions of
apparent and corrected phase velocity measurements for the 60 s
Rayleigh wave compute at two locations (stars in Fig. 1). The distri-
butions of the corrected phase velocities in general are more concen-
trated (Fig. 5c,d) than the apparent phase velocities (Fig. 5a,b) likely
reflecting the reduction of random phase bias with the amplitude
correction. We calculate both the mean and the standard deviation
of the mean of all measurements at each location to estimate the
isotropic phase velocity and its uncertainty at each location.

The final apparent and corrected isotropic phase velocity maps
in the western US for the 60 s Rayleigh wave and their uncertainties
are shown in Figs 6(a),(b) and 7. On average, the corrected phase ve-
locity map displays larger velocity contrasts for small-scale anoma-
lies. These anomalies are correlated with known geological features
(Fig. 6c) such as the fast anomalies of the Isabella anomaly in south-
ern California and the Colorado Plateau and the slow anomalies of
the Clear Lake volcanic field in northern California, the Long Val-
ley Caldera, the Newberry Caldera and the Yellowstone/Snake River
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6 F.-C. Lin and M. H. Ritzwoller

Figure 5. (a) The normalized histogram for the 60 s Rayleigh wave apparent phase velocity measurements at a point in southern Washington (star in Fig. 1)
based on all available earthquakes. (b) Same as (a) but for a point in western New Mexico (star in Fig. 1). (c)–(d) Same as (a)–(b) but for the corrected phase
velocity measurements. The mean and standard deviation of the mean, which are used to estimate the final isotropic phase velocity and its uncertainty, at each
location is shown.

Plain hot spot track, many of which are also observed in body wave
tomography (e.g. Schmandt & Humphreys 2010). The observation
that the apparent phase velocity map underestimates the amplitude
of small-scale anomalies is consistent with previous theoretical and
numerical studies (e.g. Wielandt 1993; Friederich et al. 2000; Bodin
& Maupin 2008).

The difference between the corrected and apparent isotropic ve-
locities is presented in Fig. 6(c). This difference represents the dis-
crepancy arising from the fundamental theories applied, the eikonal
equation versus the Helmholtz equation. This difference is not ac-
counted for in the uncertainty estimates shown in Fig. 7, which
mostly reflects random fluctuations rather than systematic bias. The
corrected isotropic phase velocities based on Helmholtz tomogra-
phy, in general, have smaller uncertainties than those from eikonal
tomography due to the reduction of variations in the measurements
(Fig. 7). In both cases, uncertainties grow toward the east because
the time of operation of the eastern stations is shorter than for west-
ern stations. Fewer earthquakes were analysed in the eastern than
the western part of the region of study.

The isotropic phase velocity maps at two other periods, 40 and
80 s, are shown in Fig. 8. The maps at 80 s period (Fig. 8d–f) demon-

strate clearly the advantage of using Helmholtz tomography to re-
solve smaller-scale anomalies at long periods. Similar to the result
at 60 s period (Fig. 6), small-scale anomalies are more pronounced
and in better agreement with body wave tomography results (e.g.
Schmandt & Humphreys 2010). At 40 s period, on the other hand, the
differences between eikonal and Helmholtz tomography are mostly
small with the exception of the Isabella anomaly, which is slightly
more pronounced in the corrected map.

By applying the amplitude correction term, Helmholtz tomog-
raphy accounts for both wave interference and wave front heal-
ing effects, which probably produce the reduction of random and
systematic errors, respectively. Fig. 9 summarizes the average un-
certainties of the isotropic phase velocity maps based on the two
tomography methods and the standard deviation (Std) of the system-
atic differences between the two isotropic maps across the western
US at each period. The isotropic phase velocity structures produced
by Helmholtz tomography have smaller uncertainties compared to
the result from eikonal tomography (Fig. 9a) due to the reduction
of measurement variation. The overall increase of uncertainty with
period for both tomography methods (Fig. 9a) probably results from
the decrease in the number of earthquakes used at longer periods
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Figure 6. (a) The 60 s Rayleigh wave apparent isotropic phase velocity map in the western US based on Eikonal tomography. (b) Same as (a) but for the
corrected phase velocity map based on Helmholtz tomography. (c) The difference between (b) and (a). CL, Clear Lake Volcanic Field; IA, Isabella Anomaly;
LV, Long Valley Caldera; NB, Newberry Caldera; SY, Snake River Plain/Yellowstone hot spot track; CP, Colorado Plateau.

Figure 7. (a) The uncertainty for the 60 s Rayleigh wave apparent isotropic phase velocity map. (b) Same as (a) but for the corrected isotropic phase velocity
map.

(Fig 2b). The standard deviation of the systematic differences in-
creases with period and are roughly three times larger at 100 s period
(∼33 m s–1) than at 30 s period (∼11 m s–1) (Fig. 9b). The system-
atic differences between Helmholtz and eikonal tomography, hence,
are clearly due to the finite frequency effects. Helmholtz tomogra-
phy, which accounts for finite frequency effect, clearly outperforms
eikonal tomography in resolving isotropic structures and should be
used at least at periods longer than ∼50 s for array configurations
similar to the TA.

4 A N I S O T RO P Y M A P S

For both eikonal and Helmholtz tomography, the gradient of the
phase traveltime (eq. 1) provides the approximate local direction
of wave propagation for each earthquake. For each location, we
follow the method described by Lin et al. (2009) to estimate the
phase velocity and its uncertainty within each 20◦ azimuthal bin

based on the mean and the standard deviation of the mean of the
measurements taken from all the earthquakes within each bin. A
9-point (3 × 3 grid with 0.6◦ separation) averaging scheme is used
to reduce small-scale variability in the measurements.

Fig. 10 presents examples of the directionally dependent apparent
and corrected phase velocity measurements at two locations (stars
in Fig. 1) for the 60 s Rayleigh wave. Based on observations such
as those in Fig. 10, we find that the principal components of the
azimuthal variation of the phase velocity measurements have 180◦

and 360◦ periodicities. Therefore, instead of the 180◦ periodicity
in the expected functional form for a weakly anisotropic medium
(Smith & Dahlen 1973), we assume that the phase velocity exhibits
both a 180◦ and a 360◦ periodicity

c(ψ)=ciso

{
1 + A1psi

2
cos

(
ψ − ϕ1psi

)+ A2psi

2
cos

[
2

(
ψ − ϕ2psi

)]}
,

(3)

where ciso is the isotropic component of wave speed, ψ is the
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8 F.-C. Lin and M. H. Ritzwoller

Figure 8. (a)–(c) Same as Fig. 6 but for the 40 s Rayleigh wave. (d)–(f) Same as (a)–(c) but for the 80 s Rayleigh wave.

Figure 9. (a) Average uncertainties for the apparent and corrected isotropic phase velocity maps at each period. (b) The standard deviation of the differences
between the apparent and corrected isotropic phase velocity maps at each period.

azimuthal angle measured positive clockwise from north, A1psi

and A2psi are the peak-to-peak relative amplitude of 1-psi and 2-
psi anisotropy, and ϕ1psi and ϕ2psi define the orientation of the
anisotropic fast axes for the 1-psi and 2-psi components, re-
spectively. Based on results from eikonal tomography, Lin &
Ritzwoller (2011) argued that the 1-psi anisotropy signal, which
is non-physical because it violates the reciprocity principle, prob-

ably reflects an inaccuracy in eikonal tomography. In particular,
they argued that the 1-psi signal resulted from unmodelled near-
station backward scattering. Backward scattering is a finite fre-
quency effect in which the observed apparent phase velocity at
a location is sensitive to structures downstream of the recording
station in the direction of wave propagation. Near a sharp struc-
tural contrast, this results in an apparent 1-psi anisotropy signal

C© 2011 The Authors, GJI
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Figure 10. (a) The 60 s Rayleigh wave directionally dependent apparent phase velocity measurements at a point in southern Washington (star in Fig. 1). Each
error bar presents the mean and the standard deviation of the mean of all measurements within each 20◦ bin. The solid green line is the best fitting curve of
1-psi plus 2-psi azimuthal anisotropy based on eq. (3). (b) Same as (a) but for a point in western New Mexico (star in Fig. 1). (c)–(d) Same as (a)–(b) but for
the corrected phase velocity measurements.

in which the fast direction points toward the faster structure. A
much more detailed discussion can be found in Lin & Ritzwoller
(2011).

In general, the observed directionally dependent phase velocities
become less scattered and better fitted by Helmholtz tomography
than by eikonal tomography (Fig. 10). This is because of a reduction
of directionally dependent bias, which can be caused by consistent
wave interference patterns induced by structures outside of the array
(e.g. Fig 4a–c). Note that this directionally dependent bias will
act as a random scatter for the isotropic velocity measurement.
Fig. 11(a) and (b) summarizes the chi-square misfits of the best
fitting curves based on eq. (3) for 60 s Rayleigh wave measurements
at each location based on the two tomography methods. Fig. 11(c)
summarizes the average chi-square misfits across the entire western
US at each period. The corrected phase velocities are better fitted by
eq. (3) than the apparent phase velocities in every case, suggesting
that the directionally dependent bias is significantly reduced with
Helmholtz tomography. This is a feature needed to resolve azimuthal
anisotropy robustly.

The estimated 1-psi and 2-psi azimuthal anisotropy patterns (par-
ticularly the 1-psi term) also can be significantly different based
on the two tomography methods (e.g. Fig. 10). Because the 1-psi
signal reflects isotropic bias (Lin & Ritzwoller 2011), we seek a

tomography method that reduces the 1-psi signal. In contrast, the
2-psi signal is more difficult to interpret as it reflects both phys-
ical anisotropy and perhaps also bias. Because of this difference
in interpretation of the 1-psi and 2-psi signals, we discuss each in
turn.

4.1 1-psi anisotropy as indicative of theoretical errors

A summary of the 1-psi component of azimuthal anisotropy for both
the apparent and corrected phase velocity measurements across the
western US for the 60 s Rayleigh wave is presented in Fig. 12. By
comparing with the isotropic velocity structures shown in Fig. 6(b),
the observed 1-psi anisotropy (Fig. 12a,b) can be seen to be clearly
correlated with sharp isotropic structural boundaries with fast direc-
tions pointing toward the faster isotropic structure. This confirms
that the 1-psi signal is a form of isotropic bias in the azimuthal
anisotropy measurements (Bodin & Maupin 2008; Lin & Ritzwoller
2011). The strength of the spurious 1-psi signal is significantly re-
duced in the corrected velocity map (Fig. 12b), however.

To demonstrate the frequency dependence of the 1-psi anisotropy
signals, Fig. 13 summarizes the 1-psi component of azimuthal
anisotropy for the 40 and 80 s Rayleigh waves. Fig. 13(e) presents
the averaged 1-psi amplitude over the entire western US at each

C© 2011 The Authors, GJI
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10 F.-C. Lin and M. H. Ritzwoller

Figure 11. (a) The best fitting chi-squared value for the directionally dependent apparent phase velocity measurements using eq. (3). (b) Same as (a) but for
the corrected phase velocity measurements. (c) The spatial averaged best fitting chi-squared value for apparent and corrected measurements at each period.

Figure 12. (a) The amplitude of the 60 s Rayleigh wave apparent 1-psi anisotropy based on eikonal tomography. The 1-psi fast directions at locations with 1-psi
amplitude larger than 2 per cent are presented with arrows where arrows point in the fast propagation directions. (b) Same as (a) but for the 1-psi anisotropy
based on Helmholtz tomography. (c)–(d) normalized histogram of 1-psi anisotropy amplitudes shown in (a) and (b), respectively.

C© 2011 The Authors, GJI
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Figure 13. (a)–(b) Same as Fig. 12(a) and (b) but for the 40 s Rayleigh wave. (c)–(d) Same as (a)–(b) but for the 80 s Rayleigh wave. (e) The spatially averaged
1-psi amplitude for apparent and corrected measurement at each period.

period. Overall, the 1-psi anisotropy is clearly more pronounced
at long periods, consistent with this spurious signal being a finite
frequency effect. Note that the average 1-psi amplitude decreases
only slowly toward the short period for both apparent and corrected
measurements in Fig. 13(e), suggesting that the background ran-
dom measurement errors probably also contribute somewhat to the
observed 1-psi signals.

Even with the finite frequency corrections made by Helmholtz to-
mography, some spurious 1-psi signals remain, particularly at 60 and
80 s period near the edge of the southwestern Wyoming fast anomaly
(Fig. 12b, 13d). Thus, as it is currently effected, Helmholtz tomogra-
phy remains insufficient to completely remove the effects of sharp
isotropic structural boundaries on nearby azimuthally anisotropy
measurements with the current station configuration. This inabil-
ity to completely remove 1-psi anisotropy is discussed further in
Section 5.2.

4.2 2-psi anisotropy

In contrast with the 1-psi anisotropy, the difference between the
apparent and corrected 2-psi azimuthal anisotropy is rather subtle
at 60 s period (Fig. 14a–c). Various notable differences at 60 s period
include regions near northern Oregon, the Yellowstone hot spot, and
the southern Rocky Mountains where strong isotropic anomalies are
present (Fig. 6b). These differences may represent isotropic bias in

the apparent phase velocity measurements due to unmodelled finite
frequency effects.

Better evidence that Helmholtz tomography is correcting for
isotropic bias comes from the period dependence of the differ-
ences between the eikonal and Helmholtz tomography methods.
Fig. 15 summarizes the results of 2-psi anisotropy for the 40 and 80 s
Rayleigh waves and Fig. 16(a) summarizes the standard deviation
(Std) of the fast direction differences between the 2-psi anisotropy
results of Helmholtz tomography and eikonal tomography at each
period. While the 2-psi anisotropy observed from apparent and
corrected velocity measurements with eikonal and Helmholtz to-
mography, respectively, are similar at 40 s (Fig. 15a–c), they are
quite different at 80 s period (Fig. 15d–f). The fact that the differ-
ences in the 2-psi fast direction between eikonal and Helmholtz
tomography increase with period (Fig. 16a) suggests that this dif-
ference is mostly due to finite frequency effects. Lin & Ritzwoller
(2011) argue that the 2-psi anisotropy bias in eikonal tomography
may be caused by the broad forward scattering sensitivity kernels of
the phase traveltime measurements. This bias is particularly strong
near linear isotropic anomalies where the 2-psi anisotropy fast di-
rection either is aligned or perpendicular to the linear slow or fast
anomaly, respectively. This is consistent with the assumption that
the observed 2-psi anisotropy at 80 s period based on eikonal tomog-
raphy (Fig. 15d) is heavily biased where the fast directions are better
aligned with linear slow anomaly structures (Fig. 8e) such as the
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Figure 14. (a) The apparent 2-psi anisotropy for the 60 s Rayleigh wave based on eikonal tomography where the amplitude and fast direction are summarized
by the orientation and the length of the red bars. The amplitude of 2-psi anisotropy is also shown by the background colour. (b) Same as (a) but with the
corrected 2-psi anisotropy based on Helmholtz tomography. (c) The normalized histogram of fast direction differences between (a) and (b) where only locations
with 2-psi anisotropy amplitudes both larger than 0.5 per cent are compared.

Figure 15. (a)–(c) Same as Fig. 14(a)–(c) but for 40 s Rayleigh wave. (d)–(f) Same as (a)–(c) but for the 80 s Rayleigh wave.

north–south fast direction near northern Oregon east of Cascades
and northeast–southwest fast direction near eastern Idaho within
the Snake River Plain.

Another line of reasoning that demonstrates that Helmholtz to-
mography reduces bias in 2-psi anisotropy comes from the compar-
ison of observed 2-psi anisotropy at different periods. In Fig. 16(b),

we present the vector correlation coefficient (Lin & Ritzwoller 2011;
Lin et al. 2011) between the 2-psi fast directions observed at 40 s
period and all other periods. Only locations with observed 2-psi
anisotropy amplitude larger than 0.5 per cent are included in the
calculation. Considering that Rayleigh waves are most sensitive to
uppermost mantle structures for the period range considered here,
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Figure 16. (a) The standard deviation of 2-psi fast direction differences between apparent and corrected measurements across the western US at each period.
Only locations with 2-psi anisotropy amplitudes larger than 0.5 per cent are compared. (b) The vector correlation coefficients for the 2-psi fast directions
observed between 40 sec and other periods based on either eikonal (red) or Helmholtz (green) tomography. Only locations with observed 2-psi anisotropy
amplitude larger than 0.5 per cent are used in the calculation.

it is unlikely that the intrinsic 2-psi anisotropy at different periods
will be strongly different and uncorrelated. Hence, the fact that the
observed 2-psi anisotropy at long periods is correlated better with
the result at 40 s period based on Helmholtz tomography is evidence
of less bias in the observations. Using the 80 s results as an exam-
ple, the observed 2-psi apparent fast directions based on eikonal
tomography (Fig. 15d) are only weakly correlated with the result at
40 s (Fig. 15a) with a vector correlation coefficient equal to 0.24.
In contrast, the vector correlation coefficient is equal to 0.46 for the
Helmholtz tomography result (Fig. 15b,e). We compare the results
at all periods to 40 s result because finite frequency bias is expected
to be smaller at 40 s period (Fig. 15a,b).

Although it is difficult to determine the degree of bias in 2-psi
anisotropy, our results suggest that finite frequency effects need to be
accounted for to obtain unbiased 2-psi anisotropy measurements. As
shown in Fig. 16(a), however, the 2-psi bias due to finite frequency
effects is probably small below about 50 s period, but gradually
becomes more important at longer periods (>50 s). This justifies
the use of eikonal tomography at short periods (<50 s) to constrain
shallow structures in the crust and uppermost mantle, particularly
when the amplitude information is not available such as for ambient
noise application (e.g. Lin et al. 2011; Ritzwoller et al. 2011).
At long periods (>50 s), however, the 2-psi anisotropy observed
based on Helmholtz tomography better reflects intrinsic anisotropy.
Caution should be taken, however, in interpreting the long period
results particularly before the 1-psi anisotropy signals can be more
completely removed.

5 T E C H N I C A L D I S C U S S I O N

Based on the results shown in foregoing, Helmholtz tomography
more accurately accounts for finite frequency effects and provides
better estimates of both isotropic and azimuthally anisotropic struc-
tures than eikonal tomography, particularly at periods above about
50 s. In this section, we discussed several technical issues that
combine to determine and in some cases limit the effectiveness of
Helmholtz tomography.

5.1 Detailed comparison between finite frequency bias
and the amplitude correction term

The ability to use amplitude measurements to ameliorate finite fre-
quency bias in the apparent phase velocity measurements relies on
the existence of a good correlation between the two. We attempt to

quantify this here and investigate circumstances when the amplitude
measurements do not remove bias completely.

For each earthquake we compare the apparent bias in corrected
slowness squared (α ≡ |∇τi (r)|2− 1

c0(r)2 ) with the amplitude correc-

tion term (β ≡ ∇2 Ai (r)/(Ai (r)ω2)) defined by eq. (2). To minimize
the scatter caused by spatial variations in phase speed, we use the
isotropic phase velocity speed obtained with Helmholtz tomogra-
phy (e.g. Figs 6b and 8b,e) to evaluate c0(r). Based on eq. (2), if
c0(r) accurately reflects the intrinsic phase velocity structure, a lin-
ear relationship is expected between the apparent bias (α) and the
amplitude correction term (β):

α(β) = λβ. (4)

In fact, we expect α ≈ β, but introduce a correction factor λ to
account for difficulties in estimating either the apparent bias or the
amplitude correction term. Theoretically, λ should be equal to 1.

Fig. 17 presents an example of the corrected apparent bias (α),
the amplitude correction term (β) and their relationship across the
western US for the 60 s Rayleigh wave following the Easter Island
earthquake. A good correlation between the apparent bias (α) and
the amplitude correction term (β) is observed (correlation coeffi-
cient ρ = 0.84) with the correction factor (λ ≈ 1.15) near unity.
This suggests that for this earthquake most of the finite frequency
bias can be removed with the amplitude correction term based on
the Helmholtz equation (eq. (2)).

Going further, Fig. 18(a) presents a histogram of the correlation
coefficient (ρ) between the finite frequency bias (α) and the am-
plitude correction factor (β) and Fig. 18(b) shows a histogram of
the correction factor (λ) for all earthquakes at 60 s period. The
vertical axis in each histogram is percentage of all earthquakes.
Generally, the correction factor λ is near 1 (average of 1.03) and
the correlation between the finite frequency bias and the amplitude
correction factor ρ is better than about 0.3 with an average of 0.54.
This justifies the use of the Helmholtz equation to suppress finite
frequency effects and measurement bias. Nevertheless, there are
outlier earthquakes that we seek to understand.

To provide further insight, Fig. 18(c) presents the relationship be-
tween ρ and λ for each earthquake. Clear correlation is observed be-
tween the correlation coefficient ρ and correction factor λ (Fig. 18c).
In particular, the correction factor λ is considerably smaller than the
theoretical value of unity when the correlation coefficient is small
(ρ < 0.3). For earthquakes in which the amplitude correction map
is not well correlated with the apparent phase velocity map, the
amplitude correction term is not useful to remove apparent phase
velocity variations. Earthquakes belonging to this category usually
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Figure 17. (a) The apparent slowness squared bias α derived from Figs 3(d) and 6(b). (b) Same as Fig. 4(e). (c) The relation between the apparent bias and
the amplitude correction term based on (a) and (b) where each point represents the results at a grid point on the maps. The green dashed line is the best fitting
straight line based on eq. (4) The value of the slope (correction factor λ) and the correlation coefficient (ρ) are also shown.

Figure 18. (a)–(b) The normalized histograms of the correlation coefficient (ρ) and correction factor (λ) for all events for 60 s Rayleigh wave. (c) The
relationship between the correlation coefficient and the correction factor over all earthquakes. The solid green line represents the theoretical value of the
correction factor based on eq. (2). (d) The relationship between the correlation coefficient ρ and the average of the measured amplitudes for each event.

have weak amplitude measurements (Fig. 18d). This degrades the
ability of the observed amplitude field to correct the phase mea-
surements.

Unlike low correlation coefficient (ρ < 0.3) earthquakes, the
events with high correlation coefficients (ρ > 0.5) and high cor-
rection factors (λ > 1.5) are more mysterious. Fig. 19 shows an
example of such an earthquake for the 60 s Rayleigh wave. One
common characteristic of this type of outlier is that both the ap-
parent phase velocity map (Fig. 19c) and the amplitude correction

term (Fig. 19d) display oscillations in the direction of wave propa-
gation. While the apparent phase velocity and amplitude correction
variations are highly correlated, the correction factor λ is signifi-
cantly larger (>1.5; e.g. Fig. 19e) than the theoretical value of unity.
Applying the amplitude correction to such an earthquake based on
eq. (2), therefore, does not fully remove the apparent oscillatory
bias in the phase velocity measurements (Fig. 19f). Because any su-
perposition of fundamental Rayleigh waves should still satisfy the
Helmholtz equation (eq. 2), we suspect that the oscillatory pattern
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Figure 19. (a)–(b) The 60 s Rayleigh wave phase and amplitude maps for the 2007 September 28, earthquake near Loyalty Islands (M s = 6.6; blue circle in
Fig. 2a). Contours in (a) and (b) are separated by intervals of 60 s and 5 nm s–1, respectively. (c)–(d) Same as Fig. 4(a) and (b) but with results derived from
(a) and (b). (e) Same as Fig. 17(c) but for the Loyalty Island event. (f) Same as Fig. 4(c) but derived from (c) and (d).

is due to interference with another wave type such as a body wave
or a higher mode. An understanding of the detailed cause of this
phenomenon, however, is beyond the scope of this study.

In practice, we can identify and discard these outlier earthquakes
by setting a selection criterion based on the correlation coefficient
ρ and correction factor λ. The number of outliers is small, however,
and removing them does not have a notable effect on the final result.
Besides the apparent outliers, Fig. 18(c) also shows that many high
correlation coefficient ρ earthquakes have a correction factor λ

somewhat larger than unity (but smaller than 1.5). We suspect that
this is caused by the average underestimation of the Laplacian term,
which will also be discussed further in Section 5.3.

5.2 Unmodelled finite frequency effects

In general, velocity measurements based on finite frequency surface
waves are affected by wave interference, wave front healing and
backward scattering. While wave interference is probably event-
dependent and predominantly introduces random measurement er-
rors, the effect of wave front healing and backward scattering is
more systematic and is likely to produce bias in observed variables.
In general, wave front healing acts to smear out isotropic velocity
anomalies and introduces 2-psi anisotropic bias. Backward scatter-

ing, on the other hand, introduces non-physical 1-psi anisotropic
signals (Lin & Ritzwoller 2011).

In earlier sections, we presented several lines of evidence that
Helmholtz tomography accurately accounts for these finite fre-
quency effects. This evidence included the observation of lower
variance in the velocity measurements (reducing the effect of wave
interference), better resolution of small-scale isotropic structures
and 2-psi anisotropy (reducing the effect of wave front healing), and
the overall reduction of 1-psi anisotropy (reducing the effect of back-
ward scattering). Somewhat disappointingly, however, Helmholtz
tomography falls short of completely removing the spurious 1-psi
signals, which we argue are an indicator of the severity of system-
atic bias in the inversion. The systematic bias in isotropic and 2-psi
anisotropic measurements are entangled with intrinsic structural
variations and, therefore, are harder to evaluate.

Although removing the 1-psi anisotropic signals is entirely de-
sired and may potentially lead to better resolved structural bound-
aries, it may require a more precise knowledge of near-field back-
ward scattering sensitivity (sensitivity very close to the receiver).
The Helmholtz equation (eq. 2) used in this study, although finite fre-
quency theory, is an instantaneous frequency equation. Constructing
a finite frequency kernel based on the 2-D Helmholtz equation can
result in strong side lobe oscillation particularly in the backward

C© 2011 The Authors, GJI

Geophysical Journal International C© 2011 RAS



16 F.-C. Lin and M. H. Ritzwoller

scattering region (Zhou et al. 2004). Because a finite bandwidth
filter is used in the frequency-time analysis to obtain phase and
amplitude measurements at each period, there is an apparent in-
consistency between our measurements and the theory employed.
It is unclear, however, whether finite bandwidth finite frequency
kernels constructed based on a simple reference model (e.g. Zhou
et al. 2004) will be sufficient to provide such information consid-
ering that structural variations can significantly alter the sensitivity
kernels (Lin & Ritzwoller 2010). Numerical studies (Tromp et al.
2005; Tape et al. 2010), on the other hand, may provide direct in-
sight into this issue and also provide a more straight forward means
to evaluate the potential bias due to unmodelled finite frequency
effects.

5.3 The Laplacian of the amplitude field

Helmholtz tomography depends heavily on the ability to estimate
accurately the gradient of the phase traveltime field and the Lapla-
cian of the amplitude field. The Laplacian is generally harder to
estimate with a finite station distribution. Although the method
to calculate the gradient and Laplacian operators with finite mea-
surements is not unique, the fundamental limitations are similar.
Considering the configuration of the USArray with a ∼70 km av-
erage station spacing, computation of the gradient at each location
usually involves at least the nearest three to four stations (mostly
within ∼70 km). In contrast, computation of the Laplacian involves
9 to 16 nearby stations (mostly within ∼140 km). This restricts
the resolution of the Laplacian of amplitude and is reflected in our
method that performs minimum curvature surface fitting twice to
obtain a smoothly varying Laplacian field. For shorter periods con-
sidered here, the Laplacian of amplitude is probably underestimated.
Different methods to estimate the Laplacian term, for example by
performing a contour integral by utilizing Gauss’s law, will suffer
from the same limitation. Hence, while the Laplacian of the am-
plitude term in eq. (2) can be theoretically used to correct for the
apparent phase velocity bias, in practice it does not have the same
resolving power as measurements based on the traveltime gradient
alone.

This difference in resolution between the gradient and Laplacian
operators will only be important when the phase and amplitude
variations are both dominated by small-scale features. Fig. 20 sum-
marizes the average correlation coefficient (ρ) and the average cor-
rection factor (λ) between the apparent slowness squared bias (α)
and the amplitude correction term (β) (discussed in Section 3.1) for
all earthquakes at each period. At short periods (<50 s), a smaller
overall correlation coefficient ρ (Fig. 20a) is observed, which prob-

ably reflects the shorter wavelength interference patterns that are
harder to resolve with the Laplacian operator. This is consistent
with the overall >1 average best fitting correction factor λ at short
periods (Fig. 20b), which indicates an underestimation of the Lapla-
cian term. Note that the reduction of the correction factor λ at long
periods, which eventually becomes lower than the theoretical value
of unity, is probably due to the reduced accuracy of amplitude mea-
surements at long periods. When the Laplacian of amplitude has a
larger uncertainty, using a smaller correction factor can potentially
lead to smaller spatial variations in velocity measurements but can
also fall short of correcting the systematic bias.

The presence of dense regional arrays such as the EarthScope
Flexible Array can potentially improve the accuracy of the Laplacian
operator. This may be important to resolve small-scale anomalies
and sharpen the structural boundaries. Whether the spurious 1-psi
anisotropy signals can be suppressed with the presence of such
arrays also remains as an open question.

6 C O N C LU S I O N S

The fundamental philosophy behind both eikonal and Helmholtz
tomography is to directly and locally estimate surface wave phase
velocities by interpreting the observed wavefield through an under-
lying wave equation. In contrast to traditional tomography methods
in which a forward operator is needed to construct the inverse oper-
ator, no forward modelling is needed and no inversion is performed.
Rather, only spatial operators are applied to the observations. Hence,
for eikonal and Helmholtz tomography, the accuracy of the method
is not controlled by the accuracy of forward calculations. It is con-
trolled mainly by the accuracy of the observed wavefield and the
underlying wave equation.

In this study, we show that eikonal tomography based on the
eikonal equation (Lin et al. 2009), which accounts naturally for off
great circle propagation, can be improved by also accounting for
finite frequency effects when accurate amplitude measurements are
available. By performing phase front tracking and amplitude mea-
surement, we demonstrate that the Helmholtz tomography method
clearly resolves both isotropic and azimuthally anisotropic struc-
tures better than the eikonal tomography method, particularly at
longer periods (>50 s).

Although statistics (Figs 9a, 11c and13e) suggest that Helmholtz
tomography outperforms the eikonal tomography method even at
short periods, our results suggest that the differences are small
at short periods (<50 s) where finite frequency effects are less
severe. This justifies the use of eikonal tomography for ambient
noise applications (Lin et al. 2009, 2011), which often do not extend

Figure 20. (a) The average correlation coefficient (ρ) between the apparent slowness squared bias (α) and the amplitude correction term (β) for all events as
a function of period. (b) The average correction factor (λ) for all events as a function of period.
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above 50 s period. It must be noted, however, that this period criterion
is resolution dependent and will be somewhat different for different
applications.

The fact that spurious 1-psi azimuthal anisotropy, which should
be considered as a clear indicator of systematic bias in anisotropy,
remains strong near structural boundaries at long periods (>50 s)
suggest that Helmholtz tomography, as we effect it here, remains
insufficient to model the observations fully. Three separate lines
of investigation may lead to a better understanding of this appar-
ent deficiency. First, it would be useful to investigate the accuracy
of Helmholtz tomography based on numerical simulations or with
regional arrays with a higher station density such as the Earth-
Scope USArray Flexible Array. Secondly, it would also be useful
to investigate whether the Helmholtz equation is only valid for in-
stantaneous frequency measurements. Because the frequency–time
analysis that we employ involves resolving both phase and ampli-
tude in a finite frequency band, strictly speaking, they are not instan-
taneous frequency measurements. Thirdly, the Helmholtz equation
as implemented in eq. (2) only estimates the elastic properties of
the medium. While anelasticity mainly affects the gradient of the
amplitude in the direction of wave propagation and, hence, does
not affect eq. (2), it can potentially affect the computation of the
Laplacian near a sharp structural boundary. Whether Helmholtz to-
mography can be extended to resolve elastic and aelastic structures
spontaneously is currently under investigation. The severity of sys-
tematic bias in both the isotropic and 2-psi azimuthally anisotropic
results at periods above ∼50 s will be understood better if analyses
are performed.
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