High-resolution probing of inner core structure with seismic interferometry

Hsin-Hua Huang, Fan-Chi Lin, Victor C. Tsai, and Keith D. Koper

1Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah, USA, 2Seismological Laboratory, California Institute of Technology, Pasadena, California, USA

Abstract Increasing complexity of Earth’s inner core has been revealed in recent decades as the global distribution of seismic stations has improved. The uneven distribution of earthquakes, however, still causes a biased geographical sampling of the inner core. Recent developments in seismic interferometry, which allow for the retrieval of core-sensitive body waves propagating between two receivers, can significantly improve ray path coverage of the inner core. In this study, we apply such earthquake coda interferometry to 1846 USArray stations deployed across the U.S. from 2004 through 2013. Clear inner core phases PKIKP2 and PKIIP2 are observed across the entire array. Spatial analysis of the differential travel time residuals between the two phases reveals significant short-wavelength variation and implies the existence of strong structural variability in the deep Earth. A linear N-S trending anomaly across the middle of the U.S. may reflect an asymmetric quasi-hemispherical structure deep within the inner core with boundaries of 99°W and 88°E.

1. Introduction

In recent decades, increasingly complex models have been proposed for the structure and dynamics of Earth’s inner core (for reviews see Deuss [2014] and Tkalcic [2015]). Features of these models include differential rotation of the inner core [Song and Richards, 1996; Zhang et al., 2005; Tkalcic et al., 2013], the existence of fine-scale (~1–10 km) heterogeneities [Vidale and Earle, 2000; Koper et al., 2004; Peng et al., 2008], a distinct innermost inner core [Ishii and Dziewonski, 2002; Cao and Romanowicz, 2007; Niu and Chen, 2008; Wang et al., 2015], and a long-wavelength quasi-hemispherical structure [Tanaka and Hamaguchi, 1997; Niu and Wen, 2001; Deuss et al., 2010; Lythgoe et al., 2014].

Many of these models, which are still debated, can be tested and refined as the distribution of seismic stations around the globe continues to improve; however, the uneven distribution of earthquakes places fundamental limits on the geographical sampling of the inner core. Moreover, in order to mitigate the effects of mantle heterogeneity and source mislocation, many body wave studies of the inner core measure the arrival time of PKIKP (PKPdf) with respect to a reference phase that only traverses the mantle and outer core (PKPcd, PKPbc, and PKPab), which tends to limit coverage mostly to the top ~300 km of the inner core, i.e., to the outer parts of the inner core (OIC).

New developments in seismic interferometry, however, may provide the means to overcome the limitations in lateral and radial sampling of the inner core that are common to many previous earthquake based studies. Several authors have recently shown that body waves that propagate deep within the Earth can be extracted by cross correlation of either ambient noise or earthquake coda [Poli et al., 2012; Boue et al., 2013; Lin et al., 2013; Nishida, 2013; Boue et al., 2014]. These techniques potentially provide sensitivity to any desired ray path across the inner core between two receivers, as long as the used diffusive waves well sample the stationary phase region [Sneider, 2004; Ruigrok et al., 2008; Fan and Sneider, 2009]. Importantly, uncertainties related to earthquake location are eliminated, which may prove especially fruitful for studies of time-dependent inner core structure.

Most recently, Wang et al. [2015] analyzed the autocorrelation of earthquake coda recorded by globally distributed arrays of broadband seismometers to extract the inner core body wave phases PKIKP2 (also known as P’dP’df) and PKIIP2, which take off from a station, reflect at the farside of the Earth’s surface and then propagate back to the same station. For this phase pair, the major difference in ray path exists within the inner core where PKIKP2 propagates directly through the center of the Earth, while PKIIP2 mainly traverses the OIC with underside reflections at the inner core boundary (ICB) (Figure 1a). By analyzing the global variation of differential times between these two phases, Wang et al. [2015] proposed a distinct seismic
anisotropy in the innermost inner core of ~600 km radius with a fast axis near the equatorial plane through Central America and Southeast Asia. The PKIKP2-PKIIKP2 phase pair samples the entire inner core (not just the OIC) and therefore has great potential to complement earthquake generated body wave methods.

In this study we apply earthquake coda interferometry techniques [Lin et al., 2013; Lin and Tsai, 2013; Wang et al., 2015] to 1846 USArray stations deployed across North America from January 2004 through September 2013 (Figure 1b) to extract differential travel times of PKIKP2 and PKIIKP2. Its dense station spacing, high quality recordings (e.g., uniform instrumentation), and especially its wide aperture make USArray an ideal network to probe the deep Earth with seismic interferometry. Its location straddling a recently proposed inner core hemisphere boundary at 95°W [Lythgoe et al., 2014] also provides a good opportunity to evaluate that model.

Although most USArray stations were operational for just 18–24 months, we demonstrate that reliable PKIKP2 and PKIIKP2 signals can be extracted at most stations and used to derive high-resolution maps of travel time residuals. We then validate the observed short-wavelength variations and discuss the implications for structure in the deep Earth.

Figure 1. Illustration of the data used in this study. (a) Ray paths of extracted PKIKP2 and PKIIKP2 phases. Green line and dots demonstrate the aperture of USArray as well as the antipodal bounce points (Figure 1b). (b) Distribution of $M_W \geq 7.0$ earthquakes (yellow dots) and USArray stations (green triangles). Green dots denote the antipodes of USArray stations. (c) Extracted Green’s functions along a linear station array denoted by the red triangles in Figure 1b. The time window used for travel time measurement and the measured time residuals are marked by the shaded zone and vertical bars for the phase PKIKP2 (red) and for the phase PKIIKP2 (blue).
2. Data and Methods

We mainly follow the method described by Lin and Tsai [2013] to obtain vertical-vertical cross-correlation functions (CCF) and autocorrelation functions (ACF) using coda energy between 20,000 and 40,000 s after the origin time of earthquakes with moment magnitudes larger than 7.0 for all available station pairs among the 1846 USArray stations (Figure 1b). This method first uses a running absolute mean over a 128 s time window of the 15–50 s bandpassed raw coda waveform for temporal normalization to suppress impulsive high-amplitude earthquake signals. The amplitude spectrum between periods of 5 and 800 s of the normalized coda waveforms is then flattened before cross correlation. While the temporal normalization process may suppress the amplitude of earthquake coda to the ambient noise level, no further processing is used to reduce earthquake contributions. In the end, a total of 143 $M_w \geq 7.0$ earthquakes are used. For each station, which records about 20–30 large earthquakes within its ~2 years operational time period, the vertical component of large earthquake coda are cross correlated and stacked to extract body wave signals.

Typically 20–30 events are not sufficient to obtain high signal-to-noise ratios (SNRs) in the correlations. Wang et al. [2015] used a similar number of earthquakes but required additional stacking over all of the stations in each array. For this reason, we perform a neighborhood stacking method to enhance the signal, in which all the ACFs and CCFs within a given radius are further slant-stacked. This operation results in a final neighborhood-stacked ACF (NACF) that stacks the number of sources equivalent to $N_E \times N_s$, where N_s is the number of stacked station pairs within the given radius and N_E is the average number of large earthquakes that were recorded by the station pairs included in the stack. The SNR is then calculated by taking the maximum amplitude of the desired phase (PKIKP2 or PKIIPP2) and dividing by the root-mean-square amplitude of the noise for a time period (1100–2300 s) in which no known physical phases arrive (Figure S2 in the supporting information).

The neighborhood radius is a free parameter that is varied and tested in Text S1.1. In general, larger radii not only lead to cleaner waveforms but also lower the spatial resolution since the travel time information at each station are averaged by more neighboring stations. A 300 km stacking radius is selected as a compromise between the phase SNR and the structural resolution (Text S1.1). With a radius of 300 km, the NACF yields a stack equivalent to the averaging of about 30,000 sources (Figure S1). After all the NACFs are computed and resampled to 10 samples per second, we apply an adaptive stacking method [Jansson and Husebye, 1966; Rawlinson and Kennett, 2004] to a 40 s time window centered at the predicted time from ak135 [Kennett et al., 1995] to measure the relative travel time residuals for PKIKP2 and PKIIPP2, respectively (Figures 1a and 1c). The differential travel time residuals between PKIKP2 and PKIIPP2 are then calculated and used to constrain inner core structure (Figure 2).

While some coda-derived CCF travel time measurements may be biased by anisotropic source distributions [Boue et al., 2014], the NACF travel time measurements derived here are less likely to be biased because neighborhood stacking integrates station pairs over all azimuths. Based on an uncertainty test described in Text S1.2, for the NACFs with SNR greater than 3 and cross-correlation coefficients (CC) greater than 0.96, we estimate (one standard deviation) uncertainties of 0.46 s and 0.33 s for PKIKP2 and PKIIPP2, respectively.

3. Results and Discussion

3.1. PKIKP2 and PKIIPP2 Measurements

Travel time residuals for PKIKP2, PKIIPP2, and PKIKP2-PKIIPP2 are shown in Figure 2. NACFs that do not fulfill the selection criterion (SNR ≥ 3 and CC ≥ 0.96) are excluded. In general, almost all PKIKP2 measurements meet the selection criterion except those made near the east coast of the U.S. where the stations had operated for only about 9 months at the time this study was conducted. In contrast, there are fewer measurements for PKIIPP2, since it is usually a weaker phase.

Clearly, the two phases display different residual variations. PKIIPP2, which mainly samples the mantle and OIC, exhibits positive travel time residuals (delayed arrivals) to the west and the negative residuals (advanced arrivals) to the east, with a boundary roughly at 100°W (Figures 2a and 2d). PKIKP2, which traverses the very center of the Earth, shows a similar east-west pattern but with the boundary shifted in longitude to 90°W. It also shows a roughly circular fast anomaly (advanced arrivals) beneath Montana (~47°N, 110°W) (Figures 2b and 2e). Taking the difference between the two phases enhances the Montana fast anomaly to around -4 s.
and results in a prominent N-S trending slow anomaly (delayed arrivals) across the middle of the U.S., with an average value of 2.5 s (Figures 2c and 2f). Note that the strong (4 s) positive PKIKP²-PKIIKP² spot at the southern end of the N-S trending anomaly is primarily related to a fast spot in PKIIKP² measurements. Since PKIKP² and PKIIKP² are round trip (reflected) phases, this implies one-way travel time residuals of /C0 2s and 1.25 s for the Montana and the N-S trending anomalies, respectively. Moreover, we also use an integrated 3-D velocity model, instead of the PKIIKP² reference phase, to correct the PKIKP² observations (Text S2) and find that the corrected PKIKP² residuals still clearly show the Montana and N-S trending anomalies (Figure S5).

3.2. Location of Anomalies

Differential travel time residuals for PKIKP-PKIIKP and PKIKP²-PKIIKP² have previously been mapped to the inner core, where the ray paths in the phase pairs separate the most [Niu and Chen, 2008; Wang et al., 2015]. However, the separation of the ray paths in the lowermost mantle is also notable (Figure 1a). To investigate whether the observed anomaly (Figure 2) could result from lowermost mantle structure, we conduct a finite-frequency analysis in Text S3 using a single scattering Born approximation [Dahlen et al., 2000] and find that for the long-period (20–50 s) data used here; the sensitivity radius (i.e., the radius of the first Fresnel zone along the ray path) is ~900 km for PKIKP² and ~1500 km for PKIIKP² at a depth of 2890 km (lowermost mantle), and these sensitivities thus highly overlap each other beneath USArray (Figures S6 and S7); however,
the sensitivity radius of PKIIKP2 (~4000 km) is much wider than that of PKIKP2 (~950 km) on the farside of the Earth. This suggests that lowermost mantle structure, such as D'' anomalies or ultralow velocity zones [McNamara et al., 2010], beneath the USArray are unlikely to contribute to the observed travel time anomalies of PKIKP2-PKIIKP2, but structure on the farside of Earth (beneath the Indian Ocean), that is, sampled by the wider sensitivity of PKIIKP2 but not as much by PKIKP2 may potentially be mapped into the differential time residuals.

3.3. Amplitude of Anomalies

To explain such large travel time residuals of ~4 s and 2.5 s (~2 s and 1.25 s one way) for the Montana fast anomaly and the N-S trending slow anomaly, one needs an anomaly that is either strong in P wave velocity (V_p) change or large in radial length scale (i.e., the length of ray traveling through the anomaly) in the inner core or at the farside lowermost mantle, or alternatively with large topography at the ICB or core-mantle boundary (CMB). A trade-off relationship between the length scale and velocity change of a given anomaly can be expressed as

$$ dt = -\left(\frac{dV_p}{V_p} \right) \frac{l}{v}, $$

where \(dt \) is the observed travel time anomaly, \(v \) is the background \(V_p \), \(\frac{dV_p}{V_p} \) is the percentage change in velocity for the anomaly, and \(l \) represents the radial length scale of the anomaly. Substituting the average \(V_p \) of the inner core (11.15 km/s) [Kennett et al., 1995] for \(v \) and the observed 1.25 s residual (NS-trending anomaly) for \(dt \) into equation (1), we can obtain a trade-off curve that represents how large of a length scale and how slow of a \(V_p \) anomaly would be needed in the inner core (red solid curve) to produce a 1.25 s residual (Figure 3). Likewise, a trade-off curve that represents a slow anomaly in the lowermost mantle can be obtained by replacing the \(V_p \) of the inner core with that of the lowermost mantle (13.6 km/s) (red dashed curve). In a similar manner, trade-off curves for the ~2 s residual Montana anomaly are calculated.

To explore what structure could match the trade-off curves, we summarize the radial length scales and \(V_p \) perturbations of various deep Earth structures in Figure 3, including small-scale ICB variations (3–14 km),

Figure 3. Relationship between P wave velocity (\(V_p \)) perturbation and radial length scale (i.e., thickness/height) of deep earth structures. Red solid and dotted curves represent the relationships for a slow \(V_p \) anomaly (1.25 s time residual) in the inner core and the lowermost mantle; blue solid and dotted curves represent the relationships for a fast \(V_p \) anomaly (~2 s time residual) in the inner core and the lowermost mantle according to equation (1). The ranges of the \(V_p \) perturbation and length scale for the D'' layer, ultralow velocity zone (ULVZ), fine-scale heterogeneity, topography variations of inner core boundary (ICB) and core-mantle boundary (CMB), and inner core hemispheric model are denoted by vertical black bars and boxes in different colors, respectively. Axes have logarithmic scales. Refer to section 3.3 for more details.
fine-scale inner core heterogeneity (1–10 km wavelengths with ~1.0–2.0% V_p variations), lowermost mantle D'' structure (thickness of 100–400 km and ±3% V_p variations), ultralow velocity zones (5–23% V_p drops and 5–40 km thicknesses), long-wavelength CMB variations (±1.5–4 km), and inner core hemispherical models (1.0–2.2% V_p differences between two hemispheres at the latitude of USArray and model radii that range from 300 km to the entire inner core) [Ishii and Dziewonski, 2002; Song and Dai, 2008; Dai et al., 2012; Vidale and Earle, 2000; Koper et al., 2004; Cobden and Thomas, 2013; Yao et al., 2015; Rondenay and Fischer, 2003; McNamara et al., 2010; Brown et al., 2015; Garcia and Souriau, 2000; Sze and van der Hilst, 2003; Irving and Deuss, 2011; Yee et al., 2014; Lythgoe et al., 2014]. We observe that except for the inner core hemispherical model, all other structures generally under predict the amplitude of the PKIKP2-PKIiKP2 residuals.

3.4. Inner Core Hemispherical Model

Over the past two decades, the number of observations of quasi-hemispherical inner core structure has increased significantly [Tanaka and Hamaguchi, 1997; Creager, 1999; Niu and Wen, 2001; Garcia, 2002; Irving and Deuss, 2011; Lythgoe et al., 2014]. Previous studies have suggested that the quasi-western hemisphere in the inner core is more anisotropic and has a lower isotropic V_p than the quasi-eastern hemisphere [Irving and Deuss, 2011; Deuss, 2014; Yee et al., 2014; Lythgoe et al., 2014], with the V_p of the western hemisphere being about 1.0–2.2% slower than that of eastern hemisphere at USArray latitudes (30–50°N). Assuming such a hemispherical model of the entire inner core (1217 km), we find that a larger quasi-western hemisphere bisected by two boundaries at 99°W and 88°E that range from 300 km to the entire inner core) [Ishii and Dziewonski, 2002; Song and Dai, 2008; Dai et al., 2012; Vidale and Earle, 2000; Koper et al., 2004; Cobden and Thomas, 2013; Yao et al., 2015; Rondenay and Fischer, 2003; McNamara et al., 2010; Brown et al., 2015; Garcia and Souriau, 2000; Sze and van der Hilst, 2003; Irving and Deuss, 2011; Yee et al., 2014; Lythgoe et al., 2014]. We observe that except for the inner core hemispherical model, all other structures generally under predict the amplitude of the PKIKP2-PKIiKP2 residuals.
The observed zone width would then be proportional to the exterior angles of the two hemisphere boundaries. Based on this model, the gradual residual change across two boundaries (Figure 2) can result from the neighborhood stacking method we employed (Figure 4c and Text S4) and also the finite-frequency effect of data.

The 1.2% V_p difference that is required in our model is in good agreement with the 1.0–2.2% reported in previous studies. Furthermore, the 99°W western boundary constrained in this study is similar to the 95°W boundary proposed by Lythgoe et al. [2014], though dissimilar to the 151°W–160°E range reported in other studies [Tanaka and Hamaguchi, 1997; Creager, 1999; Niu and Wen, 2001; Garcia, 2002; Irving and Deuss, 2011]. In contrast, our boundary at 88°E is different from the 14°–60°E range previously proposed [Tanaka and Hamaguchi, 1997; Creager, 1999; Niu and Wen, 2001; Garcia, 2002; Irving and Deuss, 2011; Lythgoe et al., 2014]. However, it is worth noting that our 88°E eastern boundary still lies within the uncertainty range of the eastern hemisphere boundaries of Irving and Deuss [2011] and Lythgoe et al. [2014]. The discrepancy in boundary location could arise from different sensitivities in the data sets used by various authors. The PKIKP2–PKIIKP2 and direct PKIKP data used here and in Lythgoe et al. [2014] are sensitive to the entire inner core, while the PKPbc–PKIKP or PKPab–PKIKP data used in all other studies are mainly sensitive to OIC structure. Considering the possible depth dependence of the inner core quasi-hemisphere boundaries [Waszek et al., 2011; Waszek and Deuss, 2011], the boundary locations proposed in this study (and in Lythgoe et al. [2014]) may imply an orientation of hemisphere boundaries of the inner parts of the inner core distinct from that of the well-documented OIC. If true, and assuming a 900 km radius (excluding the OIC) or 600 km radius (for just the innermost inner core of, e.g., Wang et al. [2015]) for our hemispherical model, our results would then require a 1.5% or 2.3% V_p difference between the two hemispheres, respectively.

The possibility of contamination from lower mantle anomalies, such as from D$''$ or ultralow velocity zones (ULVZs), cannot be completely ruled out by our data set. In particular, the circular (not linear) fast anomaly beneath Montana cannot be explained by an inner core hemispherical model and more likely reflects a localized D$''$ anomaly beneath the Indian Ocean. This D$''$ anomaly would then require either a thickness over 700 km or a V_p change over 5% to have a residual of $−2$ s (Figure 3), although the $−2$ s residual could be closer to $−1.5$ s if the correction using a 3-D velocity model accounts for mantle structure more accurately than using PKIIKP2 (Text S4 and Figure S5). In addition to the first-order features such as the Montana and N-S trending anomalies, the weaker, local variations especially in the western U.S. (Figure 2) may indicate the existence of local-scale (few hundred kilometers) heterogeneity in the inner core [Ohtaki et al., 2012; Yee et al., 2014] or the lowermost mantle [McNamara et al., 2010].

4. Concluding Remarks

This study is the first to obtain such dense sampling of inner core structure with seismic interferometry. The successful extraction of coherent and reliable body wave signals from earthquake coda interferometry is encouraging and suggests that the method can be used with other wide aperture arrays such as those in China and Europe to probe the deep Earth at different locations. The antipodal-distance measurements of PKIKP2 and PKIIKP2 obtained here are rare in earthquake generated body wave data sets and are critical to constrain the structure at the very center of the Earth [Rial and Cormier, 1980]. Moreover, Cormier [2015] recently showed that the waveforms of near antipodal PKIKP2 could be used to detect inner core solidification, and the waveforms of extracted antipodal PKIIKP2 should have similar sensitivities. Integrating these new interferometry data with traditional earthquake data to provide better sampling of the entire inner core would be a subject of great importance.

Most importantly, the high-resolution travel time image derived in this study displays short-wavelength variations in PKIKP2–PKIIKP2 travel time residuals, which imply strong, complex structural variability in the deep Earth. The linear and large (1.25 s) N-S trending anomaly across the center of the U.S. suggests the need for an asymmetric quasi-hemispherical structure in the inner parts of the inner core. Since potential contamination resulting from lower mantle structure beneath the Indian Ocean may exist, more stations for seismic interferometry, such as in Canada and South America, would be particularly useful in further investigating the extent of the N-S trending anomaly.
Acknowledgments
We thank Alex Song for helpful discussion. We also thank H. Tkalcic and an anonymous reviewer for their constructive comments. All waveform data used in this study can be downloaded from the IRIS Data Management Center. This work was supported by National Science Foundation grants EAR-1316348 and CyberSEE-1442665, the King Abdullah University of Science and Technology, Taiwan, grant 104-2917-I-564-052.

References
Wang, T., X. Song, and H. H. Xia (2015), Equatorial anisotropy in the inner part of Earth’s inner core from autocorrelation of earthquake coda, Nat. Geosci., 8, doi:10.1038/NGEO2354.

HUANG ET AL. HIGH-RESOLUTION INNER CORE STRUCTURE 8

