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Abstract—Ambient Noise Seismic Imaging (ANSI) is a re-
cently developed geophysical methodology to image the shallow
subsurface structures of earth using ambient/environment noise
as the source. Integrating ANSI computing within distributed
sensor networks will enable real-time continuous monitoring
of subsurface dynamics for sustainability studies. However, the
research challenges associated with this innovative approach are
significant. Traditional data collection using sensor networks
imposes practical difficulty for real-time applications, because
of the sheer amount of data and large-dense sensor arrays
versus limited network bandwidth. This paper is the first to
investigate how to utilize the computing capabilities of sensor
nodes to perform the computation of ANSI under resource
constraints. We explored two distributed approaches (aggregation
and consensus) for computing ambient noise eikonal tomography
and obtaining phase velocity maps. We performed experiments
using CORE emulator to obtain phase velocity maps on real data
from USArray Transportable Array. Results demonstrate that
our approaches can illuminate phase velocities under network
constraints. We also show that the proposed aggregation and
consensus algorithms not only balance the computation load but
also achieve low communication cost and high data loss tolerance.

Index Terms—subsurface imaging, ambient noise, eikonal to-
mography, sensor networks, distributed computation.

I. INTRODUCTION

Subsurface Imaging is a technique widely used in geo-
physical exploration for investigating structures under the
surface of earth. Understanding and addressing the subsurface
sustainability has a significant impact on natural, social, and
economic issues across the globe. Real-time imaging of shallow
underground structures is essential to assess the sustainability
and potential hazards of geological structures [1]. The recent
landslide tragedy in Washington state! is yet another example
showing that understanding the subsurface sustainability is
crucial to public safety.

To fully utilize the dense seismic array when there are
few earthquakes or other obvious events, a new approach
called Ambient Noise Seismic Imaging (ANSI) [2]-[6] has
been developed. ANSI uses vibrations from random sources
in the earth to first estimate the Green functions between

Thttp://www.dnr.wa.gov/programs-and-services/geology/geologic-
hazards/landslides#resources

pairs of stations and then invert them for obtaining 3D earth
structures. By cross-correlating continuous seismic background
noise recorded by two sensors, we can extract the seismic
surface waves between them and study earth properties. One
advantage of this approach is that it can be used to obtain
superficial structures based on persistent background noise (am-
bient noise/eikonal tomography) instead of earthquake events
(traveltime/inversion tomography). Moreover, recently, there is
a growing interest in applying ambient noise tomography to a
large N array (more than 1000 stations) to resolve the top few
kilometers of the earth structure with high-resolution[3]. For
such a study, eikonal tomography based on waveform tracking
can be used as ANSI technique to efficiently determine 2D
surface wave phase velocity maps at different periods that
represent shallow structures of earth.

The problem is that the existing ambient noise tomography
uses post-processing approaches to recover subsurface struc-
tures, and they do not yet have the capability of obtaining
information in real-time. Current approaches involve manual
collection of raw seismic data from the sensors to a central
server for post processing and analysis. This data collection
problem cannot be solved using simple data transmission in
sensor networks because of the sheer amount of data and
large-dense sensor arrays versus limited network bandwidth
and reliability. Also, it introduces a bottleneck in computation
and increases the risk of data loss in case of node failures,
especially near the central station. To address these challenges,
this paper investigates how to utilize the computing capabilities
of sensor nodes to perform in-situ ANSI computation under
resource constraints.

Computing in networks is also called fog computing, which
is an emerging computing paradigm where the data processing,
networking, storage and analytics are performed closer to the
devices (IoT) and applications. We have pioneered the deve-
lopment of such computing methodology for seismic imaging
applications [7]-[11]. Fog computing paradigm establishes
the computation directly at the edge of the network. Here,
decentralized devices communicate and potentially cooperate
among themselves delivering a new range of applications
and services like connected cars, smart grids, smart traffic
lights, mobile computing systems and many sensor networks



applications.

The main contribution of this paper is to develop two
decentralized approaches, aggregation and consensus, for
computing tomography of ambient noise over a network of
sensors using computing capabilities that allow sensors to
analyze, compute and share their own results. We compared
both approaches and identified pros and cons of each one
of them from the eikonal tomography point of view. For
aggregation approach, we used a multi-tree solution, and
we followed the specifications described in [12] and [13].
For consensus approach, we obtained the complete phase
velocity map by a general agreement between all sensors that
have partial maps (computed individually) following studies
presented in [14] and [15].

We performed experiments using CORE? emulator and used
real data from EarthScope Transportable Array (USArray)?,
which records seismic data across the United States. Since
transmission range between nodes is important for communica-
tion, we showed computing eikonal tomography and obtaining
2D phase velocity maps is possible based on the information
from neighbor nodes only.

The rest of the paper is organized as follows. Section II
presents the related work about eikonal tomography appli-
cations and tomography over sensor networks. Section III
provides background about the eikonal method. In Section IV,
we present eikonal tomography algorithms and their distributed
implementation using aggregation and consensus techniques.
In Section V we carry out experiments using real ambient
noise data from USArray. The conclusion and future work are
presented in Section VL.

II. RELATED WORK

The use of ambient noise tomography to extract surface wave
phase velocity maps has been widely studied in geophysical
fields. This method has been performed around the world
(e.g US[16], Asia[17], New Zealand and Australia[18], and
more). Even though these approaches were successful for
obtaining phase velocity maps, the majority of them have
been developed to treat the traveltime between every station
pair independently. Other approaches, like the one presented
by Lin et al. (2008)[1], have utilized the array process to treat
all measurements together to improve the resolution of the
tomography result. However, computationally, these approaches
lack real-time measurements. All of them need to collect raw
time series data from the sensors to a centralized server and
then process the information.

Taking advantage of the capabilities of current sensor
networks, computation of seismic data across a large array
of sensors is possible, which avoids centralized approaches.
Different techniques for distributed computing and aiming seis-
mic tomography were presented in [7]-[11]. All of them have
been successful in obtaining 2D and 3D seismic tomography
by solving inversion problems.

Zhttp://cs.itd.nrl.navy.mil/work/core/
3http://www.earthscope.org/science/observatories/usarray

However, even though we can set an inversion problem
such those presented above for computing seismic ambient
noise tomography, eikonal tomography represents a new
technique that does not require initial assumptions. The current
approaches that perform an inversion problem usually require
a ray tracing to compute traveltimes, which implies knowledge
about the medium and how waves propagate[19]. However,
eikonal tomography needs neither a priori information nor ray
tracing. This makes it possible to perform computations more
efficiently in every node. To the best to our knowledge, this is
the first attempt to compute ambient noise eikonal tomography
for obtaining ANSI under distributed constraints using network
sensor computing capabilities.

ITII. BACKGROUND
A. Eikonal Tomography

To compute ambient noise wave surface tomography, several
steps are required. These involve pre-processing of raw time
series data for signal conditioning[20], cross-correlation[2]
and frequency time analysis[20]. The above are beyond the
scope of this paper and we refer to [1] for details. In this
paper, we performed ambient noise eikonal tomography in
every sensor by assuming that the delay traveltimes have been
computed during the stages of cross-correlation and frequency
time analysis. Traveltime measurements are the input of our
algorithms.

The use of eikonal tomography has two major advantages.
First, the method does not need an initial model of the medium
for computing. Second, even though the method accounts for
bent rays, the ray tracing is not needed. In eikonal tomography,
the gradient of the travel times provides information about
local direction and travel of the wave, hence, deriving phase
velocity maps is possible.

1) Eikonal Equation: Once the phase traveltime 7(r;,r) are
known for positions 7 (arbitrary point in the medium) relative
to an effective source r;, the eikonal tomography is performed.
The eikonal equation[3] is based on the solution of Helmholtz
equation:

1 2 V2A7(7’)
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At high frequencies, when the right-hand term is small

enough, it can be dropped as:

)
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where, ¢; is the phase velocity for event 7 at position 7. k; is
the unit wave number vector for the event ¢ at position r. w
is the frequency and A is the amplitude of an elastic wave
at position r. The gradient is computed relative to the field
vector 7. Equation 2 is derived from equation 1 by ignoring the
second term from the right hand side. These conclude that the
gradient of the phase traveltime is related to the local slowness
at r position, and the direction of propagation of the wave
(azimuth) denotes the local direction of the wave. Dropping the



second term on the right-hand side of equation 2 is justified
when either the frequency is high or the amplitude variation is
small[3]. When eikonal tomography is used, there is no need
for a tomographic inversion because taking the gradient of
the phase traveltime surface gives the local phase speed as a
function of the direction of propagation of the wave.

2) Isotropic Wave Speeds and Azimuthal Anisotropy:
Applying eikonal equation 2 can introduce some errors and
usually the phase velocity map is noisy due to imperfections in
traveltime surface calculation. To overcome this issue, a mean
slowness Sy and standard deviation og, are calculated in order
to obtain the isotropic phase speed.
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where n is the number of effective sources, and S; the
distribution of slowness measurements. The isotropic phase
speed cg, and its uncertainty o, are calculated using equations

5 and 6 respectively. )
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Traditionally, to compute phase velocity maps using eikonal
tomography (1) we need to generate a grid of arbitrary points
(r) in the field using interpolation of traveltimes, (2) we need
to construct a phase traveltime surface for obtaining slowness
and azimuth vectors in every effective source relative to each
arbitrary point in the grid, (3) we have to calculate the mean
slowness and standard deviation of the phase traveltime surface
to overcome errors, and (4) invert the final slowness vector to
obtain the velocity map.
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IV. DISTRIBUTED EIKONAL TOMOGRAPHY

For computing distributed eikonal tomography, we proposed
two distributed approaches: aggregation, which aggregates
information in a bottom-up fashion, and consensus, which
uses information of neighbors for computing a consensual
average.

In the aggregation approach, every station calculates its
slowness and azimuth vectors using an algorithm called Phase
Traveltime Surface (algorithm 1). Then, an aggregation process
begins between all nodes. A tree of nodes is arranged, and
starting from leaf nodes, every node transmits its information to
its parent. The parent has to complete an Aggregated Isotropic
Speed Map Algorithm (AISM) which computes the average of
the slowness of its children according to a calculated weight
that indicates the percent of contribution of the child to the
computation. In the consensus approach, once every node has
calculated its slowness and azimuth vector using algorithm 1,
it starts communication with its neighbors. This node sends its
values and every one maintains a consensual group of values
according to their weights. After nodes reach consensus or the
maximum number of iterations, all nodes in the network have
a complete phase velocity map.

A. Phase Traveltime Surface Algorithm

Every node has to construct its own phase traveltime surface
based on its traveltime measurements. To construct the phase
traveltime surface it is necessary to interpolate traveltime data
onto a finer and regular grid. For example, Figure 1(a) shows a
central station and its efective sources (red lines). Figure 1(b)
shows how the travel traveltimes are interpolated in a grid (in
this case 0.2° x 0.2° grid is used [3].)

(b)

Fig. 1. Illustrating interpolation method for a central station and many virtual
sources. (a) Central station L15A and its sources(USArray). (b) Result after
applying minimum curvature interpolation.

Algorithm 1 Phase TravelTime Algorithm (PTT)

1: Set r as effective sources
. Interpolate all 7 of r onto a G° x G° grid size X y
: Perform second interpolation of 7 with extra tension
: for each point k in the interpolated grid do
Calculate V7,
Obtain Slowness S
Calculate Azimuth Ay
end

AN A

In the Algorithm 1, Sy, and Ay are the slowness and azimuth for
each point k in the grid respectively. The slowness vector (Sk)
is composed of the horizontal and vertical slowness, and the
gradient of a wave at position k (here defined as the traveltime
7) is equal to the local slowness. The output of this algorithm
is the calculated slowness and azimuth for every center station.
So, in our study, every station calculates its own slowness and
azimuth vectors individually.

B. Centralized Isotropic Speed Map Algorithm

Algorithm 1 gives the slowness and azimuth vectors centered
at every central station. However, there are irregularities present
in the phase traveltime method. To mitigate the effect of these
irregularities, statistical averaging is used in the isotropic phase
speed calculation (Algorithm 2) for obtaining the final phase
velocity map. Suppose that total surface dimension is z X y.
The statistical average used is a weighted average where the
weight is calculated based on azimuth values collected from
all effective sources of the point. Then sum of slowness for
point k is calculated using the following equation:

T XY
SWE
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where x X y denotes the total number of slowness values and
S and sw represent the slowness and weight of every point
in the grid x,y, respectively. Standard deviation (o) of the
slowness is determined by removing the uncertainty for each
point in the surface. o can be expressed as

S hsd swy * (S — 59)2
g =
(1= 32550 swi)
In the centralized approach, the Isotropic Algorithm (Algo-

rithm 2) is used for computing the final map. Table I shows
the variable reference for the Algorithm 2.

TABLE I
VARIABLE REFERENCE FOR ALGORITHM 2.

®)

Variable Name = Meaning

z and y Size of the grid rows and columns

k Vector form of the grid x,y

S Slowness

A Azimuth

w weight

w accumulated weight for every station

sw weight proportion

SF, AF, WF  Final vectors for slowness, azimuth and weight

Algorithm 2 Isotropic Algorithm(Sy,, An,,wn,)

1: Receive Sy, , An, and wy, of all n stations in consideration.
2: Initialize Resolution in x X y
3: for each point p in x X y grid do

4 for [ < O until n do

5 W, =0

6: for m < O until n do

7 if |A;, — Am,| < 25 then
8: Wi+ = wi,

9: end if

10: end

11: SWy — 1/Wl

12:  end

13:  Calculate SS
14:  Calculate o
15:  for [ + O until n do

16: if (Si, —SS) < 2.0 %0 then g+ = sw;
17: else WF,+ = w,
18:  end

19: Seta=0and b=0
20: for [ < O until n do

21: if (S, — 55 < 2.0 x o then
22: at+ = % * Sy,

23: b+ = ST, * Alp

24: end if

25:  end

26:  Set SF, =a, AF, =0

27: end

28: Return vectors SF, AF, W F

In this approach, the number of stations in consideration
(n) is the total number of the stations in the network, and
wn, starts in 1 to all stations. This is the key part of the
centralized algorithm. The algorithm computes weights taking
into consideration local slowness for computing the total
slowness of all stations. Standard deviation of slowness is
computed to suppress unreliable measurements, and the final

slowness vector is computed again with the new weights after
these suppressions.

The output of Algorithm 2 is a vector of the final slowness
(SF). The centralized approach then calculated the phase
velocity map using the inverse of this slowness (1/SF).

We designed this algorithm to make it highly parallelized.
If a distributed approach wants to use this algorithm, it only
needs to assign weights according to the iteration in process.

C. Aggregated Isotropic Speed Map Algorithm (AISM)

In order to exploit the advantages of eikonal method for
parallelizing, we design an approach in which every node
computes a partial slowness. Then, we need a technique for
aggregating this partial information into a final phase velocity
map.

For aggregating information, a simple approach could be
to propose a tree structure, where the tree is a spanning tree
of all nodes in the network. However, this approach lacks
practical validity since if one node fails after it has received
the information and before it has sent the result to its parent,
the information of that particular subtree will be absent of the
final result. To overcome this, we propose to use an aggregation
algorithm based on k spanning trees (2 or 3) called MultipleTree
algorithm[13]
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Fig. 2. Example of T7 tree in the aggregation process. (Modified from [14])

In this approach, we can view the broadcast as a Breadth-
First Search (BFS) in the network. Every node u is associated
with its level I(u). This level is the length of u shortest path to
the root and it is computed during BFS in the 7} independent
spanning tree. At the beginning, the level of every node u
is I(u) = oo, and the level of the root r is I(r) = 0. For
creating the T spanning tree, the » node makes a broadcast.
This message contains the value of T} and root level [(r) = 0.
When a node u receives a message from a node v contained
l[(v), u checks its [(u) value to see if [(u) = oo. If this happens,
u sets its level to [(u) = I(v) + 1 and forward the query to
its neighbors; otherwise, u stores the level of v as [(v). The
tree has been formed when all [-values are less than co. An
example of T tree is shown if Figure 2. Once the T}-tree is
formed, we define F'(v) ={u € N(u) such that [(u) < [(v)}
as the potential parents of node v. Every node picks uniformly
at random 7; parents from the set F'(v) (one parent for tree),
and it is the way for each T} independent spanning tree to
communicate.

The algorithm then computes the aggregation function in a
bottom-up fashion for each T); spanning tree. Every node has to



wait until it receives the information from its children or reaches
maximum time. Then the node aggregates the information and
sends it to all of its parents in the 7' trees. At the end, the

final information is computed with the roots that are available.

Algorithm 3 Aggregated Isotropic Speed Map Algorithm (AISM)
1: Initialize nodesID for all nodes n.

2: Initialize node level I(u) = oo

3: for all nodes n do in parallel

4:  Execute PHASE TRAVELTIME ALGORITHM

5: end

6: Select randomly node root r for treeID T}

7: Set I(r) = 0 for all roots

8: for all nodes n with k points in the grid do in parallel

9: if n = r then

10: Send broadcast to neighbors with I(r) and treelD Tj
11: While until receive from all n children or reach MaxTime
12: Receive (Snk, nk’wm) from its n children

13: Added its own values to the vector Snk,A;k,wnk

14: Update S, A" wit! = IsotroPIC (S}, AL, wh,)
15: Combine w1th other roots in other trees 1’

16: Calculate final map (1/Sk)

17: Output phase velocity map

18:  else

19: Receive I(u) and tree number T} from parent node
20: Set own level I(v) = I(u) + 1 for tree T
21: if n = leaf then
22: Send (Si,Ar,wi) to its father
23: else
24: Send broadcast to neighbors with {(u) and treeID T}
25: While until receive from all n children or reach MaxTime
26: Receive (S}, , A7, ,wy, ) from its n children
27: Added its own values to the vector Snk,Atnk,wf”C
28: Update AT, S wit! = IsotropIC (S, AL, wh,)
29: Send A”’1 S“’1 1 to its father
30: end if
31:  end if
32: end

Algorithm 3 is called Aggregated Isotropic Speed Map
Algorithm (AISM). This algorithm starts setting all nodes in the
network and establishes their levels in co. All nodes in parallel
compute Phase TravelTime Algorithm (Step 4). Then j trees

are formed and roots are selected uniformly random (Step 6,7).

During steps 8-32, nodes computes the aggregation in each
tree 1. Basically, if a node is a leaf, it sends its vector values
Sk, Ar and wy to its parent. These values correspond to its

slowness vector, azimuth vector and its weight vector. For leaf,

wg = 1. When a parent receives all vector of all its n children

(Sh, AL and wf ), it computes the Isotropic algorithm for

aggregating the information of its children nodes and itself.

Notice that the Isotropic algorithm is able to aggregate partial
information of all nodes in consideration After receiving the
aggregated vectors (S,iH,A};H and w 1), the node broadcast
its information to its own parent. The process continues until
node roots receive the information. Once each root of each
tree T has its complete map, the Isotropic algorithm is used
to aggregate all maps of the roots in one. Then one random
root computes the final phase velocity map using the inverse

of the final slowness (1/Sk).

D. Consensus Isotropic Speed Map Algorithm (CISM)

In consensus algorithms, every node over the network has a
initial value or group of values (measurements), and they aim
to calculate the average of all these values through a distributed
linear iteration method. A major advantage of these algorithms
is they can calculate an average of the network measurements
iteratively and distributively using local information exchange
among neighbors and calculation of weighted sums at every
node. Some papers have shown that consensus algorithms are
effective for obtaining consensus values over a network[21].

The main idea is described as follows. Consider a graph
G = (V,E) where V = {1...n} represents the vertices or
nodes in the network, and (4, j) € E represents the edges or
path of communication between nodes ¢ and j. Let IV; be the
set of neighbors of node ¢ and Np; be the neighborhood of
node ¢. Every node i initially has a local value S; € R. The
goal is to compute S = L(3°" | S;) in a distributed fashion.
Let z;(0) = S;. At time £ 1 every node transmits its current
estimate to its neighbors and then updates its information
zi(t+1) = ZjEN[i] w;;;(t) where w is the weighted sum at
every node.

Algorithm 4 Consensus Isotropic Speed Map Algorithm (CISM)

1: Initialize nodesID for all nodes n.

2: Set wr = 1 for all nodes n

: for all nodes n with points k in the grid do in parallel
Execute PHASE TRAVELTIME ALGORITHM

end

for ¢ < 0 until convergence or maximum number of iteration do
Select randomly a nelghbor and send (S}, AL, w})
Receive (S}, , AL 7wnk) of its neighbor € Ny

9:  Update (S”kl Ati w, ) = ISOTROPIC(S}, , AL, , wh, )

10: end

11: Calculate final map (1/Sk)

12: Output phase velocity map

AN A

Algorithm 4 is called Consensus Isotropic Speed Map
Algorithm (CISM). The algorithm starts by setting all nodes
of the network with an ID and a initial weight of one. Then,
all nodes execute in parallel the Phase TravelTime Algorithm.
Until they converge or reach the maximum number of iterations,
all nodes execute in parallel steps 7 to 10. First, a node select
randomly a neighbor and send its slowness, azimuth and weight
values (S}, A, wt) in time t. The node then receives the values
of its neighbor (Snk, e flk) in time t. Using the Isotropic
Algorithm, which has been designed to compute a weighted
aggregation of information, every node obtains new averaged
values for its slowness, azimuth, and weight (S}, AL wlth)
at time ¢ + 1. For verifying convergence, every node measures
the relative error between S and S;*'. When the consensus
or the maximum number of iterations has been reached, in
every node the final map is computed using the inverse of the
final slowness vector Sj.

V. EXPERIMENTAL RESULTS
A. Database

For our study, we used data collected from 1211 stations of
the USArray Transportable array database. Figure 3(a) and 3(b)
shows these stations scattered along the west coast and central



United States. Even though spacing nodes of the USArray is
based on radio of kilometers, we used this data to compare final
results by assuming that the nodes are spreading in smaller
distances. This assumption is made because eikonal tomography
can be very well applied for monitoring shallow subsurface
spanning few kilometers and a dense array of stations can be
easily deployed with space in 10s meters[4]. Also, we assumed

sensor nodes are tiny but powerful computational units (e.g.

Beaglebone Black, Raspberry Pi).

(a) (b)

Fig. 3. Stations used in our study (a) Stations in the USArray. (b) Zoom on
station in the state of Colorado.

B. AISM and CISM Performance and Accuracy.

In this experiment, we setted up nodes on the CORE emulator
to compute eikonal tomography for ANSI. Every node can be
considered as a effective central node. Figure 4 shows a graphic
interface of CORE emulator and some nodes computing phase
travel time surfaces. Results of these partial surfaces after
applying algorithm 1 are shown in Figure 5.
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Fig. 4. CORE emulator GUI

(a) (b) (©

Fig. 5. Partial maps on every virtual receiver station. (a) Station G10A partial
velocity map. (b) Station G11A partial velocity map. (c) Station G12A partial
velocity map.

Observe that every effective central node computes its partial
map using the traveltimes available from its neighbors.

We computed AISM (3 trees) and CISM algorithms for
getting final phase velocity maps over the network. Results of
applying each method are shown in Figure 6. Notice that Figure
6(a) refers to the centralized approach, Figure 6(b) shows the
AISM (3 trees) algorithm result, and Figure 6(c) the CISM
algorithm result.

We compared these results with the centralized map for
validating the accuracy of AISM and CISM algorithms. Using
m, m* and m to represent the centralized model, the proposed
distributed model and the mean value of m* respectively, we
used the following quantitative measures of distance from the
centralized model to evaluate the estimation quality.

er = (7L, (s —m})?/ o0 (mf —m)?)!/?2
€2 = 3oy i —mil/ 350 Im]]|

These represent the normalized root mean squared distance
and the average value distance respectively. The result is
shown in Figure 6(d). Notice that the distance from the
centralized approach is higher in the CISM algorithm. This
can be due to the probabilistic nature of the algorithm since
it selects randomly one neighbor node to exchange data in
each iteration. After some iterations certain nodes may only
exchange information with the same neighbor. On the other
hand, distance from centralized approach is considerably less
in the AISM algorithm. Basically, this is because AISM uses
all the information of the nodes to compute an aggregated map.
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Fig. 6. Comparison between final phase velocity maps. (a) Centralized Method.
(b) AISM Algorithm. (c) CISM Algorithm. (d) Measures of Distance from
centralized approach

C. Robustness and Loss Tolerance.

In the next set of experiments, loss tolerance and robustness
of AISM and CISM are evaluated. The algorithm runs with



the same configuration for three different packet loss ratios of
10%, 20% and 40% in the emulator and the results are shown
in Figure 7. In this case, we ran the AISM Algorithm with two
configurations: AISM using only one tree, and AISM using
three trees.

- AISM | Tree 4 ATSM | Tree
' 00 AISM 3 Trees ' 00 AISM 3 Trees
o csm o Cism
g D2 g D2
0 o
10% loss 207 loss  40% loss 10% loss 0% loss  40% loss
(@ (b)

Fig. 7. Distance from centralized approach with package loss. (a) Error e;.
(b) Error e2

Observe that for AISM (3 trees), the distance from the
centralized approach is less than AISM (1 tree) and CISM even
with severe package loss. This is due to the utilization of the
multitrees approach. Even if one branch of one tree is lost, the
other trees can recover the data with their own measurements.
Since three roots are placed randomly in the network, warranties
of fault-tolerance are established. If only one tree is used (AISM
one tree), package loss is severe. Notice that, as expected, CISM
performs well under package loss constraints. Even with 40%
fewer transmitted packages, CISM is able to recover a closer
phase velocity maps compared to centralized approach. This
is mainly because in CISM algorithm, every node spreads its
information to its neighbors in every iteration.

Even though AISM (3 trees) seems to be more fault-tolerant
than CISM, when the loss ratio increases, CISM is more stable
and it does not show significant difference in the distance
from the centralized approach. In contrast, AISM with three
trees shows a considerable increment of its distance from
the centralized map. Figure 8 shows error results for both
algorithms when loss ratio increases.
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Fig. 8. Loss ratio comparison. (a) Error e1. (b) Error es

Figure 9 gives the 2D tomography with packet loss and we
can see that with 10% or even 40% packet loss, there is no
significance difference in terms of the image reconstruction
when compared to the results with no packet loss. We selected
Figure 9 as a zoom of one part of the maps in Figure 6a and
6b. The black line is the ground true area of study obtained
with the centralized approach. Notice that in both algorithms,
this area shows small variation respecting centralized results

even with severe package loss.
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Fig. 9. Loss tolerance and robustness of AISM (3 trees) and CISM with a
map with incomplete parts. (a) AISM no package loss. (b) AISM 10% Loss.
(c) AISM 20% Loss. (d) AISM 40% Loss. (e) CISM no package loss. (f)
CISM 10% Loss. (g) CISM 20% Loss. (h) CISM 40% Loss.

D. Communication Cost

In this section, we compared the communication cost of the
centralized algorithm with proposed distributed algorithms in
terms of number of messages exchanged to reach the solution.
This is computed based on the number of messages that every
node receives during the computation. From Figure 10(a) we
can see that communication cost in a centralized setup is high
near the “central node” as all the slowness, azimuth information
is transferred over the network before computation. Figure
10(b) shows the communication pattern for AISM algorithm
using three trees. Notice that the communication cost is less
compared centralized scheme. This is mainly because AISM
distributed the computation load in trees of nodes. Observe
also that the communication is greater at the roots of the trees.
In Figure 10(c) we present the communication pattern of CISM
algorithm. Observe that this communication pattern is almost
flat which indicates CISM is able to balance the computation
load across the network.

Communication volume (Figure 10(d)) is less in CISM
because we stop the computation when we obtain an acceptable
velocity map (when we can recover a image of velocity map for
the expected resolution), and we do not wait for convergence.
However, if the algorithm runs with a high number of iterations,
its communication volume may be higher than AISM with three
tress.

With the previous results, we can conclude that both methods
produce similar results to the centralized approach in terms of
image reconstruction. The AISM has acceptable communication
cost, since children communicate with their parents only one
time. Also, reliability under package loss constraints depends on
the number of trees involved in the computation. On the other
hand, the CISM is robust even if a node fails, its neighbors have
enough information to maintain a reliable final map. However,
communication cost is directly dependent on the number of
iterations required for reaching consensus, since every node
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Fig. 10. Communication cost. (a) Centralized Approach. (b) AISM Algorithm
(3 trees). (c) CISM Algorithm. (d) Communication volume

has to communicate many times with their neighbors in order
to reach this consensus. So, if the number of iterations is high,
the communication cost will be high too.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented two distributed methods for
computing ambient noise subsurface tomography and imaging
subsurface velocities in real-time using network networks. We
showed that computing information at the edge level and
cooperating with neighbors make it possible to illuminate
near-surface velocities using the eikonal method. We showed
that both distributed algorithms produce results close to the
centralized approach, and they balance communication across
the network. Furthermore, we also tested our algorithms under
natural conditions of sensor networks, such as loss of packages,
and showed they are robust in terms of loss tolerance. For
future work, we want to improve the communication cost of
the algorithms by reducing the size and number of messages
between nodes and establishing a strong stopping criterion.
Also, we want to include previous steps of ambient noise
study such as cross-correlation and frequency time analysis for
having a complete system to analyse ambient noise.
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