
1.  Introduction
Southern California has a long history of seismic imaging studies at all scales, from regional tomography 
(e.g., Fang et al., 2016; Lee et al., 2014; Qiu et al., 2019; Tape et al., 2009), to local-scale basin and fault-zone 
structure (e.g., Allam et al., 2014; Fuis et al., 2001, 2017; Süss & Shaw, 2003), and multi-scale joint inversions 
of multiple datasets (Bennington et al., 2015; Berg et al., 2018). A primary motivation for these works is the 
significant seismic hazard posed by the San Andreas fault system, and the related need for physics-based 
hazard assessment of the region (Graves et al., 2011; Vidale & Helmberger, 1988). For the past 25 years, the 
Southern California Earthquake Center has developed and maintained multiple Community Velocity Mod-
els (CVM) with seismic hazard assessment as one of the explicit goals (Chen et al., 2007; Lee et al., 2014; 
Magistrale et al., 1996; Plesch et al., 2007; Süss & Shaw, 2003; Tape et al., 2009). Despite the long history and 
contributions from a large community of researchers, there are still several shortcomings to the Southern 
California CVM. In particular, near-surface velocity structure (<1 km depth), and corresponding ratio of 
compressional to shear velocity (Vp/Vs), remain poorly resolved at regional scales. Shallow structure is 

Abstract Near-surface seismic velocity structure plays a critical role in ground motion amplification 
during large earthquakes. In particular, the local Vp/Vs ratio strongly influences the amplitude of Rayleigh 
waves. Previous studies have separately imaged 3D seismic velocity and Vp/Vs ratio at seismogenic depth, 
but lack regional coverage and/or fail to constrain the shallowest structure. Here, we combine three 
datasets with complementary sensitivity in a Bayesian joint inversion for shallow crustal shear velocity 
and near-surface Vp/Vs ratio across Southern California. Receiver functions–including with an apparent 
delayed initial peak in sedimentary basins, and long considered a nuisance in receiver function imaging 
studies–highly correlate with short-period Rayleigh wave ellipticity measurements and require the 
inclusion of a Vp/Vs parameter. The updated model includes near-surface low shear velocity more in line 
with geotechnical layer estimates, and generally lower than expected Vp/Vs outside the basins suggesting 
widespread shallow fracturing and/or groundwater undersaturation.

Plain Language Summary Our study focuses on finding a new model to accurately image 
the near-surface and upper crust of Southern California, as this structure is critical in amplification of 
ground motion during large earthquakes. To accomplish this, we uniquely combine seismic data from 
hundreds of Southern California stations to retrieve surface waves and body waves, including from basins 
where body-wave data is typically discarded for being too great a nuisance. By employing a revolutionary 
processing technique after obtaining these datasets, we are able to test the robustness of our model by 
quantifying its uncertainty and sensitivity. Our new model includes fluid-saturated sediments in the Los 
Angeles, Salton Trough, Central Valley, and Ventura basins. Additionally, we image hard, crystalline rock 
in the Peninsular and Sierra Nevada Mountain Ranges, and see evidence for rock origins in marine or 
continental environments, respectively. We are also able to see changes in structure across major faults, 
and areas of high-fracturing. Outside of major basins, our overall results suggest widespread shallow 
fracturing and/or groundwater undersaturation.
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well-known to exert strong influence on the co-seismic ground motion (e.g., Graves et al., 2011), while local 
Vp/Vs ratio can produce amplification by a factor of three (Yang & Sato, 2000) even for sites already subject 
to amplification due to low local shear wave velocity (e.g., basins). To address these issues, several versions 
of the CVM (Lee et al., 2014; Plesch et al., 2007) include a shallow layer constrained by very local-scale ge-
otechnical studies; this ad hoc layer creates various edge effects and other artifacts (Figure S1) in the model 
and wavefield simulations (Taborda et al., 2016).

Measurements of Vp/Vs for southern California generally fall into three categories: low-resolution volu-
metric averages (e.g., Allam et al., 2014; Hauksson, 2000; G. Lin et al., 2007), localized measurements at 
seismogenic depth (e.g., Lin, 2020; Lin & Shearer, 2007; Zhang & Lin, 2014), and localized near-surface 
measurements from boreholes (Boore et al., 2003; Shaw et al., 2015 and references therein) or temporary 
seismic arrays (e.g., Murphy et al., 2010). The latter category is the most important for seismic hazard, but 
the extremely local nature is difficult to implement in physics-based assessments. Though there are many 
models which independently constrain Vp and/or Vs (e.g., Lee et al., 2014; G. Lin et al., 2010; Schmandt & 
Humphreys, 2010; Tanimoto & Prindle Sheldrake, 2002), naïvely dividing Vp by Vs models obtained with 
different data of differing resolution results in extreme inaccuracies and numerical artifacts (e.g., Allam & 
Ben-Zion, 2012). In addition, because most methods measure Vp/Vs at depth from earthquake sources, they 
lead to overestimations of Vp/Vs ratio under near-surface stress conditions (Zaitsev et al., 2017).

In order to provide a model with resolution of Vs and Vp/Vs in the upper few km, we combine the com-
plementary sensitivities of Rayleigh-wave phase velocities (upper crust), ellipticity (upper few km), and 
the initial pulse of teleseismic receiver functions (shallow Vp/Vs ratio and shallow interfaces) to create a 
self-consistent model at the regional scale across southern California. The idea to combine receiver func-
tions and surface wave data in a Bayesian joint inversion to determine Vs and Vp/Vs is relatively new (Dreil-
ing et al., 2020; Ojo et al., 2019), and only recently shown to be promising in resolving near-surface Vs and 
Vp/Vs in sediments (Li et al., 2019). By including Vp/Vs as a parameter we are able to fit receiver functions 
on a regional scale for the first time across 231 Southern California stations, including in basins where 
receiver functions have long been discarded as nuisance signals or “corrected” with ad-hoc models, as re-
verberations overprint Moho and other crustal signatures (e.g., Yeck et al., 2013). The results, presented in 
Section 3 and discussed in Section 4 below, include a map of Vp/Vs across the region and 3D shear-velocity 
(Vs) model with very low near-surface velocities in basins more in line with previous measurements of 
shallow, local Vs.

2.  Data and Methods
2.1.  Ambient Noise Surface Wave Measurements

We process three-component broadband stations (Figure 1a) identically to Berg et al. (2018), except to ap-
ply an initial band-pass filter to all continuous recordings of 0.5–170 s periods (instead of 5–150 s) to avoid 
frequency-band edge effects. We retain relative amplitude information during cross-correlation to measure 
Rayleigh-wave ellipticity, or horizontal-to-vertical (H/V) ratios (Berg et al., 2018; F.-C. Lin et al., 2014). The 
isotropic H/V ratio and uncertainty are determined from the mean and standard deviation of the mean, 
respectively, for each station with at least 20 measurements remaining after removing outliers; more details 
can be found in Berg et al. (2018). In addition to Rayleigh-wave H/V ratio measurements from 6 to 10 s 
periods, we use 3–10 s periods Rayleigh-wave phase velocities from previous ambient-noise-based eikonal 
tomography (Qiu et al., 2019) extracted at the inversion grid point nearest to each station.

2.2.  Receiver Functions

We obtain receiver functions, which capture near-station structural contrasts via P to S conversions and 
reverberations (Langston, 1977; Ligorría & Ammon, 1999; Vinnik, 1977). We analyze P and Pdiff arrivals and 
their coda from all teleseismic events from January 2004 to August 2020 with Mw > 5.1 and epicentral dis-
tances 28° to 150° via the time domain iterative method of Ligorría and Ammon (1999) with a Gaussian filter 
factor of 3 (i.e., a pulse width of 1 s). We apply automated processing based on previous work (Schulte-Pel-
kum & Mahan, 2014a, 2014b) including basic quality control steps, correction to a standard ray parameter 
of 0.06 s/km, and receiver function binning by back-azimuth; see Schulte-Pelkum & Mahan (2014a, 2014b) 
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for details. The final isotropic receiver function consists of the mean of all back-azimuths for stations with a 
minimum of 14 individual receiver functions. To focus on shallow structure, we only consider the first 2 s of 
each receiver function. In sedimentary basins the initial pulse is delayed due to the superposition of direct 
P and larger amplitude sediment Ps conversions, as the large velocity contrast at the sediment base refracts 
rays to nearly vertical incidence (Li et al., 2019; Schulte-Pelkum et al., 2017). Larger delay times of the initial 
receiver function pulse are clearly observed in basin stations (Figure 1b).

2.3.  Monte Carlo Joint Inversion

We leverage the complementary sensitivities of the Rayleigh phase velocity, H/V ratio, and receiver func-
tion datasets through a Markov Chain Monte Carlo (MCMC) joint inversion at each station to efficiently 
and effectively explore the parameter space, quantify model uncertainty, and avoid local minima (Berg 
et al., 2018; Roy & Romanowicz, 2017; Shen & Ritzwoller, 2016). Our MCMC model for each station consists 
of a top linear layer over a crustal layer with initial Vs from Berg et al. (2018) and initial Vp/Vs from the 
Brocher (2005) empirical relationship. Crustal Vs is parameterized with 10 cubic B-splines with asymmetric 
density higher in the shallower crust (Berg et al., 2018). We perturb eight free parameters (Table S1), includ-
ing the Vs in the top linear layer and the upper four B-splines in the crust, as well as the thickness and Vp/Vs 
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Figure 1.  Maps showing data at each station (circle) and Gaussian-smoothed, with ¾ width corresponding to the distance to the nearest three stations, onto 
the underlying map for (a) H/V at 7 s period and (b) receiver function initial pulse delay time. (c) Vs30 map (Wills & Clahan, 2006) with station RUS marked 
as a star and main geological features and major faults labeled, including the San Andreas (SAF), Garlock (GF), San Jacinto (SJF), and Elsinore (EF) faults. (d) 
Scatter plot of each station's H/V at 7 s period and receiver function delay time (s) from (a and b), colored according to the Vs30 (m/s) nearest to that station.
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in the top linear layer. The a priori distribution is formed by Gaussian probability with empirically chosen 
widths to fully sample the model space (see Table S1). We impose three prior constraints: a maximum Vs 
of 4.9 km/s, a positive jump from the bottom of the top linear layer into the crustal layer, and a Vp/Vs ratio 
greater than 1.

The inversion explores the a priori distribution following the Metropolis algorithm (Shen et al., 2012) with 
misfit characterized as root-mean-square between data and model predictions (Herrmann & Ammon, 2004) 
with empirically chosen weights of 30%, 30%, and 40% for phase velocities, H/V ratios, and receiver func-
tions respectively. Models with misfit less than 1.5 of the minimum misfit are included in the posterior 
distribution, and we require the posterior to contain more than 300 models for the station to be included in 
the final results. On average, there are ∼2,000 models in each posterior. Details about the number of itera-
tions, avoiding the edges of prior distributions, and data uncertainties can be found in previous works (Berg 
et al., 2018, 2020; Shen et al., 2012).

Our final model is formed by the mean of the model parameters in the posterior, except in cases where 
the mean results in a misfit value higher than that in the posterior (i.e., higher than 1.5 times the absolute 
minimum misfit). This generally occurs where the posterior models have bimodal distribution, and in these 
instances our final model is the model with minimum misfit.

Figure 2 shows the 1-D inversion result for station RUS (star, Figure 1c), including the full prior and pos-
terior distributions and data fits, and the effects of the inclusion of the receiver function data. When the 
receiver function data (Figure 2c) are not used, the shallow structure and Vp/Vs ratio (Figures 2a and 2b) 
are poorly constrained by the inversion, though the Rayleigh wave ellipticity and phase velocity (Figures 2d 
and 2e) are equally well-fit in either case. By incorporating receiver functions, not only do we gain bet-
ter constraint on the near-surface layered interface structure (Allam et al., 2017; Langston, 1979; Shen & 
Ritzwoller, 2016; Ward & Lin, 2018), but the complementary data set results in a tighter distribution of 
results in both the Vs and the Vp/Vs model space (Figures 2a and 2b). Thus receiver function data are most 
sensitive to the near-surface velocity and Vp/Vs ratio, justifies the inclusion of the latter, and demonstrates 
receiver function utility when included in this inversion.

3.  Results
3.1.  Rayleigh-Wave Ellipticity and Receiver Function Measurements

As in previous work (Berg et al., 2018), as 7 s period (Figure 1a) we observe high H/V ratios in sedimentary 
basins including the Los Angeles, Central Valley, Salton Trough, and Ventura basins; we observe low H/V 
ratios in mountainous regions such as the Sierra Nevada and Peninsular Ranges. The surface patterns of 
soft sediment compared to hard bedrock are also evident from the Wills and Clahan (2006) Vs30 map of the 
region (Figure 1c).

From the map of receiver function initial pulse delay time (Figure 1b), we see similar patterns to those of the 
H/V ratio map (Figure 1a) and the Vs30 map (Figure 1c). We observe earlier arrivals of the initial receiver 
function pulse in crystalline rock, including in the Peninsular and Sierra Nevada Ranges, and later arrivals 
in sedimentary basins, including the Los Angeles basin and the Salton Trough. The superposition of direct 
P and larger amplitude P-to-S conversions in sedimentary basins, from the bedrock interface and rever-
berations within, yields delayed and more-intricate initial pulses in the receiver functions (Li et al., 2019; 
Schulte-Pelkum et al., 2017; Yeck et al., 2013). Although typically ignored for their complexity (e.g., Allam 
et al., 2017), we directly compare the receiver function delay times to the short-period H/V ratios as both 
have shallow sensitivity. We observe strong correlation values (mean correlation coefficient 0.76) between 6 
and 10 s period H/V ratios and receiver function delay times; higher H/V ratios correspond to later receiver 
function initial pulse times (Figure 1d), which in turn correspond to lower Vs30 areas.

3.2.  Shear Velocity Model

Figures 3a and 3b show the Vs velocity MCMC inversion result at 0 and 1 km depths, respectively, interpo-
lated onto the underlying map, with a cross-section shown in Figure 3d. Major features include low-Vs sed-
imentary basins such as the Los Angeles basin, Central Valley, Ventura basin, and Salton Trough. We also 
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observe the high-Vs Peninsular and Sierra Nevada Ranges. Less prominent features include the Indian Wells 
Valley (Figures 3a and 3b) east of the Sierra Nevada, shallow Antelope Valley (Figure 3a) in the northwest 
corner of the Mojave desert, and the low-Vs Coast Ranges (Figure 3a). The northwest section of the Eastern 
California Shear Zone (ECSZ; Figure 3a) is observed as a broad low velocity zone at the surface, and strong 
across-fault contrasts in velocity are observed on the southern San Andreas, San Jacinto, and Elsinore faults 
(Figures 3a and 3b). In comparison to our previous Berg et al. (2018) model (i.e., our starting model), we 
have stronger constraint to the near-surface (see Figure S2 for the standard deviation of the posterior, and 
Figure S3 for misfits) with Vs values slower in areas of soft sediments (e.g., Salton Trough, LA and Central 
Valley basins) and faster in regions of crystalline rock (e.g., Sierra Nevada and Peninsular Ranges). A direct 
comparison of starting (red triangles, Figure 2a) to final model (yellow squares, Figure 2a), shows that the 
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Figure 2.  Markov Chain Monte Carlo (MCMC) joint inversion results for station RUS (white star, Figure 1c) including 
(a and b) search area (green dashed lines), posterior results when incorporating Rayleigh-wave phase velocity and H/V 
data only ((a) light green or (b) transparent) and all datasets (blue), as well as the starting model (red), minimum misfit 
model from the posterior (white), and mean model from the posterior (yellow) for both (a) shear velocity (Vs) results of 
the top 10 km and (b) Vp/Vs results of the top linear layer. Data (black) and forward model results for the posterior sets, 
starting, mean, and minimum misfit models for (c) receiver functions, (d) H/V, and (e) phase velocities.
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most prominent changes occur in the upper few km. Further direct comparison to the CVMS are provided 
in Figure S1, where the impact of each of these geologic regions and similarities of our model results are 
visible.

In Figure 3c we show depth to Vs of 3 km/s as an approximate basin depth map, based on the empirical Vp/
Vs relationship (Brocher, 2005) and previous observations in the LA basin (Süss & Shaw, 2003). We observe 
a greater depth to 3 km/s in the southeast portion of the LA and Ventura basins, and mid-range depths 
for the Central Valley and in the Salton Trough. This (Figure 3c, Figure S1a) agrees with previous studies 
(Berg et al., 2018; Fletcher & Erdem, 2017; Fliedner et al., 2000; Fuis et al., 2017; Han et al., 2016; Livers 
et al., 2012; Ma & Clayton, 2016; Magistrale et al., 1996). The Antelope Valley and Indian Wells Valley are 
shallower, fitting previous active-source studies (Lutter et al., 2004; Tape et al., 2010).

3.3.  Vp/Vs in the Near Surface

While Vp/Vs in the top linear layer is resolved for every station, we analyze only those stations with a 
prominent layer thickness (>0.75 km) and with low normalized standard deviation of the Vp/Vs in the pos-
terior (<0.15) to avoid including less reliable results. Figure 4a shows the Vp/Vs at stations satisfying these 
criteria, and the interpolated map. Figure 4b shows a scatter plot of the top linear layer average Vs com-
pared to Vp/Vs value (circles) and the Brocher (2005) estimate (line). We observe high scatter around the 

BERG ET AL.

10.1029/2021GL092626

6 of 11

Figure 3.  Vs results at each station, with Gaussian-smoothed (see Figure 1 description) underlying map, at (a) the surface and (b) 1 km depths, and (c) depth 
to 3 km/s. (d) Cross-section A-A’ for Vp/Vs ratio in the top linear layer (top) and Vs to 10 km depth (bottom), including white dashed line at 1.5 km/s and black 
dashed line at 3 km/s.
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Brocher-predicted Vp/Vs value skewed toward lower Vp/Vs (Figure 4b), particularly for areas with higher 
Vs values. Figure S4 shows the map of the normalized standard deviation of Vp/Vs and map-view of average 
Vs in the top linear layer.

We observe higher Vp/Vs in the Salton Trough, eastern LA basin, Central Valley, Indian Wells Valley, An-
telope Valley, and in the ESCZ with corresponding slower sediments. We observe lower Vp/Vs in the Sierra 
Nevada mountains, in the center of the Mojave desert, and in the Peninsular Ranges. Additionally, we see 
a transition from higher Vp/Vs near the San Andreas fault to low Vp/Vs along the San Jacinto and Elsinore 
faults. These observations are consistent with previous studies (Fang et al., 2019; G. Lin et al., 2007), and 
discussed in detail in the following section.

4.  Discussion
4.1.  Mountains and Mojave Desert

Compared to Berg et al. (2018), we observe faster near-surface Vs values in the Sierra Nevada and Peninsular 
Ranges (Figures 3a and 3b, Figure S4), similar to the CVMS geotechnical layer (GTL) (Shaw et al., 2015). 
Though the Vp/Vs ratio of rocks can vary significantly with fluid content and fracture density (Karato & 
Jung, 1998; Shearer, 1988), Christensen (1996) suggests that composition controls the general properties 
of igneous rock; felsic (e.g., granite) rocks have relatively low Vp/Vs ratio (<1.7) and high silica content 
(>65%), while mafic (e.g., basalt) rocks have higher Vp/Vs ratios (>1.8) and lower silica content (<45%). In 
the Sierra Nevada Range, we observe lower Vp/Vs consistent with Cretaceous granitic rocks (Irwin, 1990) 
at the surface and previous studies (Hauksson, 2000; G. Lin et al., 2007; Murphy et al., 2010). Consistent 
to previous studies (Fang et al.,  2019; Hauksson, 2000), we resolve, in the southernmost portion of our 
study, the northern extent of the complex mafic Peninsular Ranges batholith containing an abundance of 
gabbros (Gastil et al., 1975; Hauksson, 2000; Kimbrough et al., 2015; Langenheim & Jachens, 2003; Wet-
more et al., 2003) with corresponding relatively higher (∼1.8) Vp/Vs ratios. We also observe the transition 
to the northeast into more quartz-rich granitic material (Gastil et al., 1975; Hauksson, 2000; Kimbrough 
et al., 2015; Wetmore et al., 2003), including into the fast-Vs low-Vp/Vs Cretaceous plutons (Morton & Ken-
nedy, 2005) between the Elsinore and San Jacinto faults. Relatively low Vp/Vs ratios in the Mojave Desert 
between Antelope Valley (previously observed by Hauksson, 2000 & Murphy et al., 2010) and the ECSZ like-
ly correspond to Precambrian metamorphic and plutonic rocks with values consistent to lab measurements 
(McCaffree Pellerin & Christensen, 1998).

Similar to previous studies, we observe higher Vp/Vs (Figure 4a) in portions of the San Andreas fault (Fang 
et al., 2019; Murphy et al., 2010) and in the ECSZ (Hauksson, 2000; G. Lin et al., 2007) where slower Vs is 
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Figure 4.  Vp/Vs results from the top linear layer as a (a) map at each station, with Gaussian-smoothed (see Figure 1 description) underlying map, and (b) 
scatter plot from each station of average Vs in the top linear layer versus Vp/Vs of the top linear layer.
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also observed (Figure 3a). S-waves are particularly sensitive to reduction in velocity within a fault damage 
zone due to the high fracture density (Catchings et al., 2014, 2020; Mitchell & Faulkner, 2009), as observed 
along the Mojave section of the San Andreas Fault (Fang et al., 2019; Murphy et al., 2010). Similarly, the 
ECSZ contains low-Vs and high-Vp/Vs which we interpret as widespread aligned fractures created by the 
broad region of strike-slip deformation (Sauber et al., 1986).

More generally in our model, stations outside of sedimentary basins have low Vp/Vs (<1.75) ratios (Fig-
ures 4a and 4b). While these values are lower than anticipated from previous imaging (Hauksson, 2000) 
and laboratory (Christensen, 1996) studies, recent work (Zaitsev et al., 2017) shows that low Vp/Vs and 
a negative Poisson ratio (Vp/Vs < 1.42) is not an exotic result and has been observed in a significant por-
tion of experimental data samples (∼45%) at low confining stress (i.e., surface conditions). Previous south-
ern California imaging studies have observed higher Vp/Vs ratios likely due to greater depth sensitivity 
(Hauksson, 2000; Lin & Shearer, 2007; G. Lin et al., 2007). The low Vp/Vs ratios obtained in the present 
model suggest widespread fracturing and/or poor consolidation with little-to-no fluid saturation (Avseth 
& Bachrach, 2005; Bachrach et al., 2000; Shearer, 1988) in the near-surface crust of Southern California 
outside of major basins.

4.2.  Basins

Major basins in Southern California are clearly observed as regions of high Vp/Vs and reduced Vs (Fig-
ure 3a), lower than previous imaging work (Berg et al., 2018; Lee et al., 2014; Tape et al., 2010) and more 
in line with estimates of Vs30/GTL (Figure S1, Shaw et al., 2015). These include the Salton Trough, Central 
Valley, and Los Angeles and Ventura basins. We do not observe the San Bernardino Basin–likely because 
of station coverage and overall shallow basement depth (Anderson et al., 2004) – but the nearby Cajon and 
Banning Passes are visible as low-Vs high-Vp/Vs areas.

The high Vp/Vs ratios (Figure 4a) seen in all basins are consistent with fluid-saturated measurements and 
observed in previous studies (Fang et al., 2019; Hauksson, 2000; Hauksson & Haase, 1997; G. Lin et al., 2007; 
Murphy et al., 2010). In the LA basin (Figure S4) we observe strong similarities in Vs to the GTL, which 
is well-constrained via dense borehole measurements (Shaw et al., 2015). Although we have limited hori-
zontal resolution due to station coverage, we observe that the deepest part of the LA basin (Figure 3c) lies 
between the Newport-Inglewood and Whittier faults (20–50 km distance in Figure 3d). This portion of the 
LA basin coincides with relatively higher Vp/Vs ratios, potentially related to the shallower water table (Cal-
ifornia Department of Water Resources, 2017; Water Replenishment District of Southern California, 2017), 
and is consistent to previous studies based on borehole measurements (Hauksson & Haase, 1997) and local 
earthquakes (G. Lin et al., 2007). North of the Hollywood fault, in the Santa Monica mountains between the 
LA and Ventura basins, we observe low Vp/Vs similar to borehole studies (Hauksson & Haase, 1997). The 
Santa Monica mountains contain Mesozoic igneous and metamorphic granitic rocks (Lutter et al., 2004; 
Murphy et al., 2010), and the region adjacent to the Hollywood fault contains granitic and dioritic plutonic 
rocks (Hildenbrand et al., 2001).

5.  Conclusions
We apply Markov Chain Monte Carlo inversion of short-period Rayleigh-wave phase velocity and ellipticity 
with early-time (0–2 s) receiver functions to determine shallow Vs (<10 km) and near-surface Vp/Vs ratios. 
We observe Vs values near the surface that more closely resemble borehole and exploration studies in the 
Los Angeles basin, and higher Vs in the Peninsular and Sierra Nevada Ranges near the surface. Our low Vp/
Vs ratio results outside of fluid-saturated basins correspond to mafic material in the Peninsular Ranges, fel-
sic material in the Sierra Nevada Ranges and granitic regions, and significantly overall low Vp/Vs suggests 
widespread shallow fracturing and/or groundwater undersaturation.
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Data Availability Statement
Data are archived and distributed by the Southern California Earthquake Data Center (SCEDC; http://
scedc.caltech.edu/research-tools/waveform.html) and the IRIS Earthquake Data Center (https://ds.iris.
edu/ds/nodes/dmc/). The SCEC Community Velocity Model, CVMS-4.26, is available from the Southern 
California Earthquake Center (https://github.com/SCECcode/UCVMC, only available at Github). Model 
of 3-D shear wave velocity and surface Vp/Vs is available from IRIS Data Services Products: Earth Model 
Collaboration (https://doi.org/10.17611/dp/emc.2021.scabergetal.1).
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